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1 Manifolds and Tensor Fields

General relativity is a theory about curvature in spacetime - how things move inside a curved
spacetime, and how these things change the curvature of spacetime. Before we delve into the physics
of general relativity, we want a mathematical formalism that can be readily used to describe the
concepts in GR. In this section we will briefly introduce some of the most important concepts,
according to Robert M. Wald’s General Relativity [1].

1.1 Manifolds

From our experience, spacetime is a “four-dimensional continuum” because it requires four numbers
to specify an event. In special relativity we assume this is globally true and that all events in
spacetime have one-to-one correspondence with the points in R4. However, in general relativity
we are solving for the geometry of spacetime and we do not want to make assumptions about the
global structure of spacetime in advance. For example, before Magellan set out to investigate the
structure of the surface of the Earth, he might notice that he could characterize the positions in his
vicinity by two numbers, but it would be wrong to assume this fact is globally true and all points
on the Earth have a one-to-one correspondence with the points in R2.

In the case of the Earth, its surface lives in the higher dimensional Euclidean space R3 of all
space points, so the study of two-dimensional surfaces embedded in R3 is adequate for analyzing
the structure of the Earth’s surface and we do not need to introduce the abstract concept of a
manifold. However, in GR, as far as we know the spacetime does not live in a higher dimensional
Euclidean space, and the concept of a manifold would be very useful.

First, consider an open ball in Rn of radius r centered around point y = (y1, ..., yn), which
consists of points x that satisfy |x− y| < r, where

|x− y| =

[∑
µ

(xµ − yµ)2

]1/2

. (1.1.1)

An open set in Rn is any set that can be expressed as a union of open balls, and Rn is a topological
space - a set of points along with a set of neighborhoods for each point that satisfies a set of axioms
relating the points and neighborhoods. A manifold is a topological space that locally resembles
a Euclidean space near each point p. It is a set made up of pieces that look like open subsets of
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Rn such that they can be sewn together smoothly. Each point of an n-dimensional manifold has
a neighborhood homeomorphic to an open subset of Rn1. For example, one-dimensional manifolds
include lines and circles, but not figure eights, which have crossing points that are not homeomorphic
to R.

A manifold locally resembles the Euclidean space, but this may not be true globally. For
example, the surface of the sphere is not homeomorphic to the Euclidean plane for reasons such
as compactness2. However, a region/open subset Oα of the manifold can be mapped into an open
subset Uα of the Euclidean plane using a map projection (chart, a.k.a. coordinate system) ψα.
When a region appears in two neighboring charts, the two charts are not exactly the same and
we need a transformation (transition map) ψβ ◦ ψ−1

α to connect them. Manifolds can include
additional structure, such as a differentiable structure that allows calculus to be done on the
manifolds. This special class of manifolds is called differentiable manifolds.

If the transition from one chart to another is differentiable, i.e. the charts are compatible, then
computations done in one chart are valid in any other differentiable chart. A Ck-manifold is a
topological manifold with a chart whose transition maps are all k-times continuously differentiable.
A smooth manifold (C∞-manifold) is a differentiable manifold for which all transition maps are
smooth so it is a Ck-manifold for all k.

To summarize, an n-dimensional, C∞, real manifold M satisfies the following properties:

(1) Each point p ∈M lies in at least one subset Oα, i.e. the collection {Oα} covers M .

(2) For each α, there is a bijective map ψα : Oα → Uα where Uα is an open subset of Rn.

(3) If any two sets Oα and Oβ overlap, i.e. Oα ∩Oβ 6= ∅, then we have the map ψβ ◦ ψ−1
α which

takes points in ψα[Oα ∩Oβ] ⊂ Uα ⊂ Rn to points in ψβ[Oα ∩Oβ] ⊂ Uβ ⊂ Rn.

We also require in the definition of M that all coordinate systems compatible with (2) and (3)
are included so that one cannot define a new manifold just by adding or deleting in a coordinate
system. Note that each chart ψα is also a homeomorphism.

Rn is a trivial example of a manifold and is covered by a single chart (O = Rn, ψ = identity
map).We cannot map an entire 2-sphere into Rn in a continuous, one-to-one manner, but we can
do so by defining six hemispherical open sets O±i , each of which can be mapped homeomorphically
into an open disk D via the projection maps f±i such that f+

1 (x1, x2, x3) = (x2, x3), etc. It can be
checked that the transition maps/overlap functions f±i ◦ (f±j )−1 are C∞.

For two manifolds M and M ′ of dimension n and n′, we can make the product space M ×M ′
consisting of all pairs (p, p′) into an (n+n′)-dimensional manifold by defining the chart ψαβ : Oαβ →
Uαβ ⊂ Rn+n′ on M ×M ′, where Oαβ = Oα ×O′β, Uαβ = Uα ×U ′β, and ψαβ(p, p′) = [ψα(p), ψ′β(p′)].

We can now define differentiability and smoothness of maps between manifolds. A map f :
M →M ′ is C∞ if for each α and β, the map ψ′β ◦ f ◦ ψ−1

α taking Uα ⊂ Rn into U ′β ⊂ Rn′ is C∞. f
is called a diffeomorphism if it is C∞, bijective and its inverse is C∞.

1.2 Vectors

In pre-GR physics, space has the natural structure of a three- or four-dimensional vector space with
a point designated as origin and the vector space axioms apply. This structure is lost in curved

1A homeomorphism is the mapping that preserves all the topological properties of a given space.
2A generalization of the notion of closedness and boundedness in the Euclidean space.

3



geometries. For example, it is hard to define how to “add” two points on a sphere to obtain a
third point. We can recover the vector space structure in the limit of infinitesimal displacements,
or tangent vectors, about a point. For manifolds embedded in Rn, a tangent vector at p can be
thought of as a vector lying in the tangent plane of the surface at that point.

However, in cases where a manifold is not embedded in Rn we need to to define a tangent vector
by referring only to the intrinsic structure of the manifold. We do so by treating the tangent vector
as a directional derivative. There is a one-to-one correspondence between vectors v = (v1, ..., vn)
and directional derivatives

∑
µ v

µ(∂/∂xµ) in Rn. The latter are characterized by linearity and the
Leibnitz rule when acting on functions, so we can define a vector v at point p ∈ M to be a map
v : F → R, where F is the collection of C∞ functions from M to R, that satisfies the following
properties:

(1) Linearity: v(af + bg) = av(f) + bv(g) ∀f, g ∈ F ; a, b ∈ R

(2) Leibnitz rule: v(fg) = v(f)g(p) + f(p)v(g)

Note these rules imply that for a constant function h(q) = c ∀q ∈M , we have v(h) = 0.
It is easy to see that the collection of tangent vectors Vp at p ∈ O ⊂ M has the structure of

a vector space under the laws of addition and scalar multiplication. Another property states that
dimVp = n for an n-dimensional manifold M . For a chart ψ : O → U ⊂ Rn, we can prove this by
constructing a coordinate basis {Xµ} of the tangent space given by

Xµ(f) =
∂

∂xµ
(f ◦ ψ−1)

∣∣
ψ(p)

(1.2.1)

where xµ are the Cartesian coordinates of Rn. A detailed proof can be found on page 15 of Wald.
One can also denote Xµ as ∂/∂xµ, and we would get a different coordinate basis {X ′ν} if we

chose a different chart ψ′. We can relate the two bases using chain rule:

Xµ =
n∑
ν=1

∂x′ν

∂xµ
∣∣
ψ(p)

X ′ν (1.2.2)

where x′ν is the ν-th component of the map ψ′ ◦ ψ−1. Therefore, the components v′ν of a vector
v in the new basis are related to the components vµ in the old basis by the vector transformation
law

v′ν =
∑
µ

vµ
∂x′ν

∂xµ
(1.2.3)

1.2.1 Curves

A smooth curve C is a C∞ map C : R → M , with a parameter t. We associate with C a
tangent vector T ∈ Vp at each point p ∈M by setting T (f) equal to the derivative of the function
f ◦ C : R→ R evaluated at p. Note that C on M will be mapped into a curve xµ(t) on Rn with a
choice of coordinate system ψ. For any f ∈ F , we have

T (f) =
d(f ◦ C)

dt

∣∣
p

=
∑
µ

∂

∂xµ
(f ◦ ψ−1)

dxµ

dt
=
∑
µ

dxµ

dt
Xµ(f) (1.2.4)
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In any coordinate basis, the components of T are

Tµ =
dxµ

dt
(1.2.5)

We can also define a vector space Vq at a point q ∈ M , but there is no way of determining
whether a tangent vector at q is the same as a tangent vector at p given only the structure of a
manifold. Later, given a connection (derivative operator) on the manifold, we will introduce the
notion of parallel transport along a curve joining p and q. The identification of the two vector
spaces will depend on the choice of the curve.

A tangent field v on M is an assignment of a tangent vector v
∣∣
p
∈ Vp at each point p. Although

Vp and Vq are different vector spaces, we can still define what it means for v to vary smoothly from
point to point. If a function f is smooth, then at each p, v(f) is a function on M and v

∣∣
p
(f) is a

number. The tangent field is smooth if v(f) is smooth for each f . Since Xµ are smooth, we have
that v is smooth if and only if its coordinate basis components vµ are smooth.

1.2.2 Precise meaning of tangent vector

We can give precise meaning to the idea of tangent vectors as infinitesimal displacements. Consider
a one-parameter group of diffeomorphisms φt, which is a C∞ map from R×M → M . For a fixed
parameter t ∈ R, φt : M → M is a diffeomorphism and φt ◦ φs = φt+s ∀t, s ∈ R. φ0 is the identity
map.

For a fixed p ∈M , φt(p) : R→M takes in a parameter t ∈ R and maps it to a point on M , thus
we can think of φt(p) as a curve, called the orbit of φt. φt(p) passes through p at t = 0. Define v

∣∣
p

as the tangent to this curve at t = 0, then the vector field v is the infinitesimal generator of these
transformations φt. We thus associate the vector field v to φt.

We can also do the converse and find the integral curves of v given a smooth vector field v by
solving the system

dxµ

dt
= vµ(x1, ..., xn) (1.2.6)

if we pick a coordinate system in the neighborhood of p. The point φt(p) is the point at parameter
t on the integral curve of v starting at p.

1.2.3 Commutator

For two smooth vector fields v and w it is possible to define a new vector field called the commu-
tator

[v, w](f) = v[w(f)]− w[v(f)] (1.2.7)

The commutator of any two vector fields Xµ and Xν occurring in a coordinate basis is zero.
Conversely, given a collection {Xi} of nonvanishing, linearly independent, commuting vector fields,
one can always find a chart for which they are the coordinate basis vector fields.

1.3 Tensors

In the previous section we introduced displacement vectors, and there are many quantities that
have linear or multilinear dependence on displacements. An example would be the measurement
of the magnetic field - we do not need to measure the projection of the field in every possible
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orientation of the probe. Only three linearly independent directions are needed because the field
strength has a linear dependence on the probe direction.

This means the magnetic field can be treated as a vector, or more precisely as a dual vector.
We can define a dual vector as a collection of three numbers associated with a basis of spatial
displacement vectors that transform inn a certain way when the basis is changed. We can also
define it as a linear map from spatial displacement vectors to numbers. We will show that we can
associate any dual vector with an ordinary vector because space has a metric defined on it.

Similarly, if a quantity depends linearly on more than one spatial displacement vector, such as
the force per unit area exerted on a material body in equilibrium, we obtain a tensor (in this case
the stress tensor). A tensor is a multilinear (linear in each variable) map from vectors (or dual
vectors) to numbers.

Let V be any finite-dimensional vector space over R. Consider the collection V ∗ of linear maps
f : V → R. One can get a natural vector space structure on V ∗ with definitions of addition and
scalar multiplication on such linear maps. We call V ∗ the dual vector space to V and the elements
of V ∗ are the dual vectors. If v1, ..., vn is a basis of V , we can define elements v1∗, ..., vn∗ ∈ V ∗ by

vµ∗(vν) = δµν (1.3.1)

where δµν is the Kronecker delta. It follows directly that {vµ∗} is a basis of V ∗ called the dual
basis to the basis {vµ} of V , and we have dimV ∗ = dimV , i.e. V and V ∗ are isomorphic. This
isomorphism depends on the choice of basis and there is no natural way of identifying V with V ∗.

We can apply the procedure twice to obtain the double dual vector space V ∗∗. A vector
v∗∗ ∈ V ∗∗ is a linear map from V ∗ to R. We can show that V ∗∗ is isomorphic to V because we can
associate a v∗∗ ∈ V ∗∗ to each v ∈ V such that v∗∗(v) = w∗(v), where w∗ ∈ V ∗. This means we can
naturally identify V with V ∗∗.

Let us now formally define a tensor. Let V be a finite dimensional vector space and V ∗ be its
dual space. A tensor T of type (k, l) over V is a multilinear map

T : V ∗ × ...× V ∗︸ ︷︷ ︸
k

×V × ...× V︸ ︷︷ ︸
l

→ R. (1.3.2)

This means T produces a number from k dual vectors and l ordinary vectors. If we fix all but one
of the vectors or dual vectors, it is a linear map on that variable.

For example, a type (0, 1) tensor is a dual vector, and a type (1, 0) tensor is a double dual vector
but since we identify V ∗∗ with V , it is also an ordinary vector. This idea allows us to view a type
(1, 1) tensor T as a linear map from V to V or a linear map from V ∗ to V ∗ because it is an element
of V ∗∗ if we fix v ∈ V and an element of V ∗ if we fix v∗ ∈ V ∗. Therefore, a type (k, l) tensor T can
be viewed as either T : V → T (k, l − 1) or T : V ∗ → T (k − 1, l).

The collection T (k, l) of all tensors of type (k, l) has the structure of a vector space given rules
of addition and scalar multiplication, and a tensor is unique specified by giving its values on vectors
in a basis of V and dual vectors in the dual basis of V ∗. The dimension of the vector space T (k, l)
is nk+l because there are nk+l linearly independent ways of filling the slots of a type (k, l) tensor,
where n is the dimension of V .

We introduce two important operations on tensors. A contraction with respect to the i-th
(dual vector) and j-th (vector) slots is a map C : T (k, l)→ T (k − 1, l − 1). If T ∈ T (k, l), then

CT =
n∑
σ=1

T (..., vσ∗, ...; ..., vσ, ...) (1.3.3)
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where {vσ} is a basis of V and is inserted into the j-th slot; {vσ∗} is its dual basis and is inserted
into the i-th slot. The contraction operation is indepenent of the choise of basis. The contraction
of a type (1, 1) tensor T : V → V is just the trace of the map.

Another operation is the outer product. The outer product of two tensors T ∈ T (k, l) and
T ′ ∈ T ′(k′, l′) is a type (k+k′, l+l′) tensor denoted T⊗T ′. Given (k+k′) dual vectors v1∗, ..., vk+k′∗

and (l + l′) vectors w1, ..., wl+l′ ,

S = T ⊗ T ′ = T (v1∗, ..., vk∗;w1, ..., wl) · T ′(vk+1∗, ..., vk+k′∗;wl+1, ..., wl+l′) (1.3.4)

A tensor is called simple if it can be expresses as an outer product.
If {vµ} is a basis of V and {vν∗} is its dual basis, the nk+l simple tensors {vµ1⊗ ...⊗vµk⊗vν1∗⊗

...⊗ vνl∗} form a basis of T (k, l), so we can express every T ∈ T (k, l) as a sum of simple tensors

T =

n∑
µ1,...,νl=1

Tµ1...µkν1...νlvµ1 ⊗ ...⊗ v
νl∗. (1.3.5)

The basis expansion coefficients Tµ1...µkν1...νl are called the components of T with respect to that
basis. The standard convention is to use superscripts for labels associated with vectors (V ∗ → R)
and subscripts for those associated with dual vectors (V → R).

In the component form, the contraction and outer product formulas can be written as

(CT )
µ1...µk−1

ν1...νl−1 =
n∑
σ=1

T
µ1...σ...µk−1

ν1...σ...νl−1 (1.3.6)

S
µ1...µk+k′

ν1...νl+l′ = Tµ1...µkν1...νlT
′µk+1...µk+k′

νl+1...νl+l′ . (1.3.7)

Let us now a consider the special case where V is the tangent space Vp at p ∈ M . V ∗p is the
cotangent space at p and its vectors are the cotangent vectors3. In section 1.2 we defined the
coordinate basis ∂/∂x1, ..., ∂/∂xn of Vp. The associated dual basis is denoted as dx1, ..., dxn. We
can think of the dual basis vectors dxµ as the linear map defined by dxµ(∂/∂xν) = δµν . From Eq.
1.2.3 and 1.3.1 we have the transformation law for a dual vector with components wµ:

w′µ′ =
n∑
µ=1

wµ
∂xµ

∂x′µ′
(1.3.8)

The general tensor transformation law (sometimes used as the definition of tensors) is

T
′µ′1...µ′k

ν′1...ν
′
l

=
n∑

µ1,...,νl=1

Tµ1...µkν1...νl
∂x′µ

′
1

∂xµ1
...
∂xνl

∂x′ν
′
l

. (1.3.9)

An assignment of a tensor over Vp at each point p ∈ M is called a tensor field. We define a
covariant field w to be smooth (C∞) if for each smooth vector field v the function w(v) is smooth. A
tensor T ∈ T (k, l) is smooth if T (w1, ..., wk; v1, ..., vl) is a smooth function for all smooth covariant
vector fields w1, ..., wk and smooth contravariant vector fields v1, ..., vl.

3We also commonly refer to vectors in Vp as contravariant vectors and vectors in V ∗p as covariant vectors.

7



1.3.1 The metric tensor

A metric tells us the “infinitesimal squared distance” associated with an “infinitesimal displace-
ment”. In section 1.2 we explained that an “infinitesimal displacement” can be described by
a tangent vector, so a metric g must be “quadratic” in the tangent vector. g is therefore a
type (0, 2) tensor field and a linear map Vp × Vp → R. A metric must be symmetric, meaning
g(v1, v2) = g(v2, v1) ∀v1, v2 ∈ Vp, and nondegenerate, meaning g(v, v1) ∀v ∈ Vp only if v1 = 0. A
metric is an inner product at each point in the tangent space. We sometimes denote g as ds2, and
the component expansion of g is

ds2 ≡ g =
∑
µ,ν

gµνdx
µ ⊗ dxν =

∑
µ,ν

gµνdx
µdxν (1.3.10)

Given a metric g we can always find an orthonormal basis vi of the tangent space at each poin
p, such that g(vµ, vν) = 0 if µ 6= ν and g(vµ, vµ) = ±1. There exists other orthonormal bases at p
but the number of basis vectors with g(vµ, vµ) = +1 and the number with g(vµ, vµ) = −1 are always
the same. The number of occurences of + and − is called the signature of the metric. In ordinary
differential geometry the metric is usually positive definite (+ + + + ..., a.k.a. Riemannian). The
metric of spacetime has signature −+ ++ and is called Lorentzian. We can also view g as a linear
map Vp → V ∗p via v → g(·, v), thus establishing connection between vectors and dual vectors.

1.4 The Abstract Index Notation

Manipulations of high type tensors are very cumbersome, and we have seen that a tensor can be
viewed in many equivalent ways, so it is important to have a simple, unambiguous notational scheme
for tensor operations. The component notation introduced in section 1.3 solves these problems, but
it does not make a distinction between equations that hold between tensors and equations for their
components that hold in a specific basis.

We therefore use the abstract index notation, which is just a slight modification of the
component notation. We simply replace the Greek indices with Latin indices, which serve not as
basis components but as reminders of the number and type of variables the tensor acts on. For
example, T abcde denotes a type (3, 2) tensor. Note that the same letter must be used to represent
the same slot on both sides of an equation.

Under this notation, we denote the contraction of a tensor by repeating the index on the
contracted slots and omitting the summation. For example, T abcbe denotes the contraction of T abcde
with respect to the second contravariant and first covaraint slots. The outer product of two tensors
T abcde and Sab is denoted by T abcdeS

f
g.

Additional rules apply to the metric tensor, denoted by gab. For a vector va we denote the dual
vector gabv

b as simply va. The inverse metric is a type (2, 0) tensor (g−1)ab but we denote it as
simply gab. By definition, we have gabgbc = δac which is the identity map from Vp to Vp. In general,
raising and lowering indices correspond to applying the inverse metric or metric to that slot.

We can also express symmetry properties of tensors using this notation. If a tensor Tab takes
a pair of vectors (va, wa) into a number Tabv

awb, then we can denote the tensor obtained by
interchanging the order in which Tab acts on the pair as Tba. A symmetric tensor follows Tab =
Tba. We also introduce a notation for the totally symmetric and totally antisymmetric parts of
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tensors:

T(ab) =
1

2
(Tab + Tba) (1.4.1)

T[ab] =
1

2
(Tab − Tba) (1.4.2)

In general

T(a1...al) =
1

l!

∑
π

Taπ(1)...aπ(l) (1.4.3)

T[a1...al] =
1

l!

∑
π

δπTaπ(1)...aπ(1) (1.4.4)

where the sum is taken over all permutations π and δπ is +1 for even permutations and −1 for
odd permutations. A totally antisymmetric type (0, l) tensor field Ta1...al = T[a1...al] is called a
differential l-form4.

2 Curvature

Our intuition of curvature comes from two-dimensional surfaces embedded in R3 and is based on
how surfaces bend in R3. As far as we know the spacetime manifold M is not embedded in any
higher dimensional space, so we need to develop an intrinsic notion of curvature. This can be
defined in terms of parallel transport (keeping a vector “pointing in the same direction” in the
tangent space). On a plane, if one parallel transports a vector around any closed the path, the final
vector always coincides with its initial values. This is not true on a sphere. Here we can see the
idea of parallel transport can be used to characterize the curvature of any manifold.

Another way to characterize curve is through geodesics. A geodesic is a curve whose tangent is
parallel transported along itself, i.e. it is the straightest possible curve. A space is curved if and
only if some initially parallel geodesics fail to remain parallel.

There is no natural notion of parallel transport given only the manifold structure of space
because the tangent spaces of two distinct vectors are different. We therefore need to relate parallel
transport along a curve to taking derivatives of vector fields in the direction of the curve. We can
define a vector to be parallel transported if its derivative along the curve is zero. The failure of a
vector to return to its original value after parallel transported around an infinitesimal closed curve
translates to the lack of commutativity of derivatives, and we can define curvature in terms of the
failure of successive differentiations on tensor field to commute.

2.1 Derivative Operators and Parallel Transport

A derivative operator∇, a.k.a. covariant derivative, on a manifold M is a map that takes each
differentiable type (k, l) tensor field to a differentiable type (k, l+ 1) tensor field. For T a1...akb1...bl ∈
T (k, l), we denote the tensor field resulting from acting ∇ on T by ∇cT a1...akb1...bl . Note that ∇c is
not a dual vector. ∇ satisfies the following properties:

(1) Linearity: ∀A,B ∈ T (k, l) and α, β ∈ R,
∇c(αAa1...akb1...bl + βBa1...ak

b1...bl
) = α∇cAa1...akb1...bl + β∇cBa1...ak

b1...bl

4Sometimes we denote an l-form Ta1...al as simply T when dealing strictly with differential forms.
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(2) Leibnitz rule: ∀A ∈ T (k, l), B ∈ T (k′, l′),
∇e[Aa1...akb1...blB

c1...ck′
d1...dl′

] = [∇eAa1...akb1...bl ]B
c1...ck′

d1...dl′
+Aa1...akb1...bl [∇eB

c1...ck′
d1...dl′

]

(3) Commutativity with contraction: ∀A ∈ T (k, l),
∇d(Aa1...c...akb1...c...bl) = ∇dAa1...c...akb1...c...bl

(4) Consistency with the notion of tangent vectors as directional derivatives on scalar fields:
∀f ∈ F and ta ∈ Vp, t(f) = ta∇af

(5) Torsion free5: ∀f ∈ F , ∇a∇bf = ∇b∇af

The fifth condition is assumed satisfied by ∇ in GR but it is not always imposed in other theories
of gravitation. The last three conditions allow us to derive an expression for the commutator of
two vector fields va, wb in terms of any ∇a:

[v, w](f) = v{w(f)} − w{v(f)}
= va∇a(wb∇bf)− wa∇a(vb∇bf)

= {va∇awb − wa∇avb}∇bf (2.1.1)

[v, w]b = va∇awb − wa∇avb. (2.1.2)

To show that derivative operators exist, let ψ be a coordinate system and {∂/∂xµ} and dxµ

be the associated coordinate bases. We may define an ordinary derivative ∂a in the region
covered by these coordinates. For any smooth tensor field T a1...akb1...bl with components Tµ1...µkν1...νl
in this basis, ∂cT

a1...ak
b1...bl

is the tensor whose components in this basis are the partial derivatives

∂(Tµ1...µkν1...νl)/∂x
σ. All five properties follow from the properties of partial derivatives, so we can

construct an associated derivative operator ∂a for any ψ. This operator is coordinate dependent
and is not naturally associated with the structure of the manifold.

Condition (4) states that any two derivative operators ∇a and ∇̃a must produce the same result
when acting on scalar fields, but it is possible that they disagree in their action on higher rank
tensors such as dual vector fields. Let wb be a dual vector field on V ∗p , we can use conditions (2)
and (4) to show that for an arbitrary scalar field f ,

∇̃a(fwb)−∇a(fwb) = f(∇̃awb −∇awb) (2.1.3)

At point p, both ∇̃awb and ∇awb should depend on how wb changes as we move away from p by the
definition of a derivative, but their difference does not. Suppose w′b is a different dual vector field
that equals wb at p, we can find smooth functions f(α) that vanish at p and smooth dual vector

fields µ(α) such that (similar to a component expansion): w′b − wb =
∑n

α=1 f(α)µ
(α). Plug this into

Eq. 2.1.3 we have

∇̃a(w′b − wb)−∇a(w′b − wb)|p =
∑
α

{∇̃a(f(α)µ
(α)
b )−∇a(f(α)µ

(α)
b )} (2.1.4)

=
∑
α

f(α){∇̃aµ
(α)
b −∇aµ

(α)
b } = 0 (2.1.5)

5If this is not imposed, it can be shown that there exists a tensor T cab antisymmetric in a and b such that
∇a∇bf −∇b∇af = −T cab∇cf . T cab is called the torsion tensor.
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since each f(α) = 0 at p. This shows (∇̃a−∇a)w′b = (∇̃a−∇a)wb at p, which means the difference
in the actions of the two operators on dual vector fields depends only on the value of wb at p,
because we were able make this difference the same for the two dual vector fields at a point by
making the two fields equal at that point. Therefore, ∇̃a −∇a defines a linear map of dual vectors
at p (as opposed to dual vector fields defined in the neighborhood of p) to type (0, 2) tensors at p.
This map itself is a type (1, 2) tensor at p and we denote it as Ccab. We have shown that for any
two derivative operators ∇̃a and ∇a there exists a Ccab such that

∇awb = ∇̃awb − Ccabwc (2.1.6)

This describes the possible disagreements of the actions of the two operators on dual vector fields.
Using the torsion free condition, we can show a symmetry property of Ccab. Let wb = ∇bf =

∇̃bf , we have ∇a∇bf = ∇̃a∇̃bf − Ccab∇cf . Since both ∇a∇bf and ∇̃a∇̃b are symmetric in a and
b, Ccab must also be symmetric in a and b, i.e. Ccab = Ccba. This is not necessarily true if we do
not impose the torsion free condition.

The difference in the action of ∇̃a and ∇a on vector fields and all higher rank tensor fields is
determined by conditions (2) and (4), and Eq. 2.1.6. For every vector field ta and one form field
wa:

(∇̃a −∇a)(wbtb) = (Ccabwc)t
b + wb(∇̃a −∇a)tb = 0

wb[(∇̃a −∇a)tb + Cbact
c] = 0

∇atb = ∇̃atb + Cbact
c (2.1.7)

A general formula for T ∈ T (k, l) can be derived in a similar manner:

∇aT b1...bkc1...cl = ∇̃aT b1...bkc1...cl +
∑
i

CbiadT
b1...d...bk

c1...cl
−
∑
j

CdacjT
b1...bk

c1...d...cl
. (2.1.8)

The difference between the two derivative operators is thus completely characterized by the tensor
field Ccab, or affine connection. Since on an n-dimensional manifold Ccab has n2(n + 1)/2 inde-
pendent components at each point, there is a lot of freedom in the choice of a derivative operator.

In the case where ∇̃a is an ordinary derivative ∂a, C
c
ab is called a Christoffel symbol and

denoted Γcab:
∇atb = ∂at

b + Γbact
c. (2.1.9)

If we know Γcab, we can compute ∇a since we know how to compute an ordinary derivative. Note
that Γcab is also coordinate dependent because it is associated with ∇a and the coordinate system
we used to define ∂a.

With the derivative operator now defined, we can say a vector va given at each point on a curve
C with tangent vector ta is parallel transported as one moves along C if

ta∇avb = 0 (2.1.10)

is satisfied along C. This can be generalized to a tensor of arbitrary rank simply by replacing vb

with the tensor. In terms of components in a coordinate basis and the parameter t along the curve,
this equation becomes

dvν

dt
+
∑
µ,λ

tµΓνµλv
λ = 0. (2.1.11)

11



This shows the parallel transport of va depends only on its value along the curve. Also, it follows
from properties of ODEs that Eq. 2.1.11 always has a unique solution for any given initial value of
va, so a vector at point p uniquely defines a parallel transported vector everywhere on the curve.
Thus, given a derivative operator and a curve connecting p and q, we can map into each other the
vector spaces associated with the two points. This mathematical structure is called a connection.

Although there are many possible derivative operators on the manifold, there is a unique defini-
tion of parallel transport that preserves inner products of all pairs of vectors given a metric of any
signature. Let us require that for two vectors va and wa, their inner product remain unchanged
when they are parallel transported along any curve, i.e. ta∇a(gbcvbwc) = 0 for vb and wc satisfying
Eq. 2.1.10, then we obtain tavbwc∇agbc = 0. Since we require this to hold for any curve and
vectors, we get

∇agbc = 0 (2.1.12)

This is the metric compatibility condition, and it uniquely determines ∇a. A proof is given on
page 35 in Wald. In terms of ordinary derivative, this unique choice is given by

Γcab =
1

2
gcd{∂agbd + ∂bgad − ∂dgab} (2.1.13)

In component form, this is

Γρµν =
1

2

∑
σ

gρσ
{
∂gνσ
∂xν

+
∂gµσ
∂xν

− ∂gµν
∂xσ

}
(2.1.14)

2.2 Curvature

As mentioned before, we want to use the path dependence of parallel transport to define the intrinsic
notion of curvature. Let ∇a be a derivative operator, wa be a dual vector field, and f be smooth
function. Again using Leibnitz rule, we obtain

(∇a∇b −∇b∇a)(fwc) = f(∇a∇b −∇b∇a)wc. (2.2.1)

By the same reasoning following Eq. 2.1.3 in the previous section, we have that the tensor (∇a∇b−
∇b∇a)wc at p depends only on the value of wc at p. Thus (∇a∇b − ∇b∇a) defines a type (1, 3)
tensor, i.e. a linear map from dual vectors at p to type (0, 3) tensors at p, and there exists a tensor
field R d

abc such that for all wc,

∇a∇bwc −∇b∇awc = R d
abc wd. (2.2.2)

R d
abc is called the Riemann curvature tensor.
R d
abc is related to the failure of a vector to return to its original value when parallel transported

around a closed curve. Let us consider a surface S with coordinates t and s that contains the point
p (chosen to be (0, 0)). We construct a loop by moving ∆t along s = 0, followed by moving ∆s
along t = ∆t and then moving back by ∆t and ∆s. Let va be a vector at p that is not necessarily
tangent to S and parallel transport va around this loop. To compute the change in va when it
returns to p, we can choose an arbitrary dual vector field wa and find the change in the scalar vawa
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around the loop. For small ∆t, the change in the scalar in the first leg of the curve is

δ1 = ∆t
∂

∂t
(vawa)

∣∣
(∆t/2,0)

= ∆tT b∇b(vawa)
∣∣
(∆t/2,0)

= ∆tvaT b∇bwa
∣∣
(∆t/2,0)

(2.2.3)

where T b is the tangent to the curves of constant s and T b∇bva = 0 by Eq. 2.1.10. This expression
is similar for other parts of the curve, and the parts corresponding to the ∆t variations are

δ1 + δ3 = ∆t{vaT b∇bwa
∣∣
(∆t/2,0)

− vaT b∇bwa
∣∣
(∆t/2,∆s)

} (2.2.4)

As ∆s → 0, the term in brackets goes to zero, so the total change in vawa, as well as the total
change in va, vanishes. This means parallel transport is independent of path to first order in ∆t
and ∆s. This means va at (∆t/2,∆s) equals the parallel transport of va at (∆t/2, 0) along the
curve t = ∆t/2 to first order in ∆s. However, to first order the term T b∇bwa at (∆t/2,∆s) will
differ from its parallel transport from (∆t/2, 0) by ∆sSc∇c(T b∇bwa), where Sc is the tangent to
the curves of constant t. Therefore, the total change to second order in ∆t and ∆s is

δ1 + δ3 = −∆t∆s vaSc∇c(T b∇bwa). (2.2.5)

We evaluate all tensors at p and include all parts of the curve. Using commutativity of the coordi-
nate vector fields T a and Sb, we find the total changes in vawa and va are

δ(vawa) = ∆t∆sva{T c∇c(Sb∇bwa)− Sc∇c(T b∇bwa)}
= ∆t∆s vaT cSb(∇c∇b −∇b∇c)wa
= ∆t∆s vaT cSbR d

cba wd (2.2.6)

δva = ∆t∆s vdT cSbR a
cbd . (2.2.7)

Analogous to our derivation of Eq. 2.1.7, we can show that for a vector field ta and

(∇a∇b −∇b∇a)tc = −R c
abd t

d, (2.2.8)

and for an arbitrary tensor field T c1...ckd1...dl

(∇a∇b −∇b∇a)T c1...ckd1...dl = −
k∑
i=1

R ci
abe T

c1...e...ck
d1...dl

+
l∑

j=1

R e
abdj

T c1...ckd1...e...dl . (2.2.9)

Four key properties of the Riemann tensor are

(1) R d
abc = −R d

bac .

(2) R d
[abc] = 0.

(3) For the metric compatible derivative ∇a, i.e. ∇agbc = 0, Rabcd = −Rabdc.

(4) The Bianchi identity: ∇[aR
e

bc]d = 0.
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Properties (1)-(3) also lead to a symmetry property of R d
abc : Rabcd = Rcdab. Full proofs of these

properties can be found on page 39 of Wald. To summarize: (1) follows from the definition of R d
abc ;

(2) comes from R d
[abc] = 2∇[a∇bwc] = 0, which can be proven from Eq. 2.1.8 in the case ∇̃a = ∂a;

(3) follows from Eq. 2.2.9 applied to gab; (4) can be derived from Eq. 2.2.9 and the commutator of
derivative operators.

The Riemann tensor can be decomposed into a “trace part” and a “trace free part.” The trace
of the Riemann tensor over its first two or last two indices is zero by properties (1) and (3). We
define the Ricci tensor Rac as the trace of R d

abc over its second and fourth indices (or equivalently
the first and the third)

Rac = R b
abc (2.2.10)

Rac is symmetric by the symmetric property of the Riemann tensor. The trace of the Ricci tensor
is the scalar curvature R = R a

a . The trace free part is called the Weyl tensor6 Cabcd, defined
for manifolds of dimension n ≥ 3 by

Rabcd = Cabcd +
2

n− 2
(ga[cRd]b − gb[cRd]a)−

2

(n− 1)(n− 2)
Rga[cgd]b. (2.2.11)

Cabcd satisfies the properties (1)-(3) and is trace free on all of its indices.
By contracting over the indices a and e, the Bianchi identity becomes

∇aR a
bcd +∇bRcd −∇cRbd = 0. (2.2.12)

Raising d and contracting over b and d, we get

∇aR a
c +∇bR b

c −∇cR = 0 (2.2.13)

or ∇aGab = 0, where

Gab = Rab −
1

2
Rgab (2.2.14)

is the Einstein tensor.

2.3 Geodesics

Geodesics are the straightest possible lines we can draw on a curved geometry, and we define a
geodesic as a curve whose tangent vector T a is parallel transported along itself, i.e.

T a∇aT b = 0. (2.3.1)

This is actually a stronger condition than what we need for the curve to satisfy the requirement
of being the straightest possible line because it requires the tangent vector to both point in the
same direction and maintain the same length when parallel transported. We can drop the second
requirement to get a weaker condition

T a∇aT b = αT b (2.3.2)

It can be shown that we can always reparameterize this curve so that it satisfies the stronger
condition, and this is called affine parameterization. We require a geodesic to be affinely pa-
rameterized.

6It is sometimes called the conformal tensor.
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If we map the geodesic into a curve xµ(t) in Rn using a coordinate system ψ, the component
form of the geodesic equation is

dTµ

dt
+
∑
σ,ν

ΓµσνT
σT ν =

d2xµ

dt2
+
∑
σ,ν

Γµσν
dxσ

dt

dxν

dt
= 0 (2.3.3)

This includes n coupled second order ODEs, and a unique solution exists for any initial xµ and
dxµ/dt. Thus given p ∈M and T a ∈ Vp, there always exists a unique geodesic through p with T a.
This allows us to construct some convenient coordinate systems.

For p ∈ M , we define the exponential map Vp → M that maps T a ∈ Vp to a point in M
lying at unit affine parameter from p along the geodesic through p with tangent T a. There always
exists a sufficiently small neighborhood of the origin of Vp on which the exponential map is one-to-
one. The dimension of Vp is n so we can identify it with Rn, and use the exponential map to give
us a coordinate system called Riemannian normal coordinates at p. In these coordinates all
geodesics through p are mapped into straight lines through the origin of Rn. Eq. 2.3.3 tells us the
components of Γµσν are zero at p, and this makes the Riemannian normal coordinates useful for
calculations at a given point.

Let S be a hypersurface, i.e. an (n−1) dimensional submanifold embedded in n dimensional M .
At each point p ∈ S, we can view the tangent space Ṽp of S as an (n− 1) dimensional subspace of
Vp of M . A vector na ∈ Vp will be orthogonal to all vectors in Ṽp with respect to the metric gab and
we say it is normal to S. If S is not a null hypersurface7, we normalize na with gabn

anb = ±1. In
this case we can use the Gaussian normal coordinates, or synchronous coordinates, given a
a metric-compatible ∇a. For each p ∈ S we construct a unique geodesic through p with tangent na.
We choose arbitrary coordinates (x1, ..., xn−1) in a small portion of S around p, and label points
in the neighborhood by these coordinates and the parameter t of the geodesic on which the point
lies. This defines a chart in a sufficiently small neighborhood of p.

A property of the Gaussian normal coordinates is the geodesics remain orthogonal to all hy-
persurfaces St defined by a constant t. We can prove this by showing the tangent field na of the
geodesic remains orthogonal to all coordinate basis fields Xa

i that generate the tangent space to St.
Note that na and Xb commute because they are elements of a coordinate basis on M :

nb∇b(naXa) = nan
b∇bXa +������

Xanb∇bna

= naX
b∇bna =

1

2
Xb∇b(nana) = 0. (2.3.4)

This shows that naX
a remains zero.

Geodesics of a metric-compatible derivative operator the length of curves connecting two points
as measured by the metric. For a differentiable curve C with tangent T a on a manifold M with
Riemannian metric gab, we define the length of C as

l =

∫
(gabT

aT b)1/2dt. (2.3.5)

For a Lorentzian metric with signature − + +...+, a curve is said to be: timelike if gabT
aT b < 0;

null if gabT
aT b = 0; and spacelike if gabT

aT b > 0. The length of spacelike curves the length is

7In the case of a Riemannian metric, na cannot lie in Ṽp; in the case of a metric of indefinite signature, na could
be a null vector (gabn

anb = 0) and lie in Ṽp, and we say S is a null hypersurface at p.
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defined the same way as in Eq. 2.3.5. For null curves the length is zero. For timelike curves, we
define the proper time:

τ =

∫
(−gabT aT b)1/2dt. (2.3.6)

Note that the length or proper time does not depend on parameterization, and the length of curves
which change from timelike to spacelike is not defined. Since the tangent of a geodesic is parallel
transported with constant norm, the geodesic cannot change from timelike to spacelike or null in a
Lorentz manifold.

We can derive the condition for a curve C that extremizes the length between its endpoints
p = C(a) and q = C(b), meaning that the length of the curve does not change to first order under
arbitrary smooth deformation that keeps the endpoints fixed. We will consider a spacelike curve
and work in Rn with a chart. In a coordinate basis, Eq. 2.3.5 becomes

l =

∫ b

a

[∑
µ,ν

gµν
dxµ

dt

dxν

dt

]1/2

dt. (2.3.7)

We will use variations to extremize l in the same way we vary the action in Lagrangian mechanics.
Assuming the curve is parameterized so that gabT

aT b = 1, the extremization condition is

0 =

∫ b

a

∑
α,β

{
− d

dt

(
gαβ

dxα

dt

)
+

1

2

∑
λ

∂gαλ
∂xβ

dxα

dt

dxλ

dt

}
δxβdt (2.3.8)

Note that δxβ vanishes at the endpoints. It can be shown this equation holds for arbitrary δxβ if
an only if the geodesic equation (Eq. 2.3.3) holds. Thus, a curve extremizes the length between
its endpoints if and only if it is a geodesic. This derivation can be applied to the proper time of
a timelike curve as well, and it also shows Eq. 2.3.3 can be obtained from the variations of the
Lagrangian

L =
∑
µ,ν

gµν
dxµ

dt

dxν

dt
. (2.3.9)

In many cases, the most efficient way to compute the Christoffel symbol to start with the La-
grangian, write down the Euler-Lagrange equations, and read off Gammaµσν by comparing with
Eq. 2.3.3.

There are always curves of arbitrary lengths (with a lower bound) connecting two points on a
Riemannian manifold, and the shortest path between two points is always a “straightest possible
path.” However, a given geodesic between two points is not necessarily the shortest path: in a
Lorentzian manifold, we can always find timelike curves of arbitrarily small proper time for two
points that can be connected by a timelike curve. If a curve of greatest proper time exists, it must
be a timelike geodesic.

We can now study the relation between the curvature of the manifold and the tendency for
geodesics to accelerate toward or away from each other. Let γs(t) be a smooth one-parameter
family of geodesics. For each s ∈ R, γs is a geodesic parameterized by affine parameter t; and the
map (t, s) → γs(t) is smooth, one-to-one, and has smooth inverse. Let Σ be the two-dimensional
submanifold spanned by the curves γs(t). The tangent vector field T a = (∂/∂t)a satisfies Eq. 2.3.1.
The vector field Xa = (∂/∂s)a is the deviation vector and represents the displacement to an
infinitesimally close geodesic. Xa has a “gauge freedom” in the sense that it changes by adding
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a multiple of T a under a reparameterization t → t′ = b(s)t + c(s), and we can set XaTa = 0 by
choosing the appropriate parameterization. Since T a and Xa are coordinate vector fields (we chose
t and s to be the coordinates), they commute:

T b∇bXa = Xb∇bT a; (2.3.10)

so XaTa is constant along each geodesic by the same argument as in Eq. 2.3.4.
The relative velocity between geodesics va = T b∇bXa is the rate of change of Xa along a

geodesic. Similarly, the relative acceleration is

aa = T c∇cva = T c∇c(T b∇bXa) (2.3.11)

= T c∇cva = T c∇c(Xb∇bT a)
= (T c∇cXb)(∇bT a) +XbT c∇c∇bT a

= (Xc∇cT b)(∇bT a) +XbT c∇c∇bT a −R a
cbd X

bT cT d

= Xc∇c(T b∇bT a)−R a
cbd X

bT cT d

= −R a
cbd X

bT cT d (2.3.12)

where we used the “anti-Leibnitz” rule in the second to last line. Eq. 2.3.11 is the geodesic
deviation equation. It states that the geodesics will deviate from each other if and only if
R d
abc 6= 0.

2.4 Methods for Computing Curvature

Previously we defined the Riemann tensor in section 2.2 simply by pointing out that there must
exist such a tensor that describes the difference in action of the operators ∇a∇b and ∇b∇a on dual
vector fields. However, we do not know how to calculate R d

abc , and we will discuss methods for
calculating R d

abc in this section.

2.4.1 Coordinate component method

We start by choosing a coordinate system and expressing ∇a in terms of ∂a and the Christoffel
symbol: ∇bwc = ∂bwc − Γdbcwd. Plugging this into Eq. 2.2.2, we get

R d
abc wd = [−2∂[aΓ

d
b]c + 2Γec[aΓ

d
b]e]wd. (2.4.1)

This holds for all wd so we can drop wd to get an expression for R d
abc . In component form, this is

Rσµνρ =
∂

∂xν
Γσµρ −

∂

∂xµ
Γσνρ +

∑
α

(Γα µρΓσαν − ΓανρΓ
σ
αµ). (2.4.2)

We can then plug in values of Γσµν calculated through any methods we introduced earlier.
We will discuss some useful facts about calculations in coordinate bases. We can write the

components of the metric gµν as a matrix (gµν). We define g to be the determinant of (gµν)

g = det (gµν) (2.4.3)

so the natural volume element on the manifold induced by gab is
√
|g|dx1...dxn.
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We can use Eq. 2.1.14 to derive the contracted Christoffel symbol Γaab

Γaaµ =
∑
ν

Γννµ =
1

2

∑
ν,α

gνα
∂gνα
∂xµ

=
1

2g

∂g

∂xµ
=

∂

∂xµ
ln
√
|g|. (2.4.4)

This appears in the component form of the Ricci tensor, as well as the divergence of any vector
field T a:

∇aT a = ∂aT
a + ΓaabT

b =
∑
µ

1√
|g|

∂

∂xµ
(
√
|g|Tµ). (2.4.5)

2.4.2 Orthonormal basis (tetrad) methods

A coordinate basis {∂/∂xµ} is not orthonormal except in the case of flat spacetime in Cartesian
coordinates, so we introduce a “nonholonomic” (noncoordinate) orthonormal basis of smooth vector
fields (eµ)a satisfying

(eµ)a(eν)a = ηµν = diag(−1, ...,−1, 1, ..., 1). (2.4.6)

In four dimensions, {(eµ)a} is called a tetrad. Eq. 2.4.6 implies∑
µ,ν

ηµν(eµ)a(eν)b = δab (2.4.7)

where ηµν = (ηµν)−1 = ηµν .
There are three key requirements for the tetrad methods: (1) the derivative operator ∇a is

metric compatible; (2) ∇a is torsion free; and (3) the Riemann tensor is related to ∇a by Eq. 2.2.2.
In the coordinate basis methods, (2) is expresses by the symmetric property of Ccab, (1) is given
by Eq. 2.1.13, and (3) is expressed by Eq. 2.4.2.

We begin by defining the connection 1-forms, waµν :

waµν = (eµ)b∇a(eν)b. (2.4.8)

The components of waµν are called the Ricci rotation coefficients:

wλµν = (eλ)a(eµ)b∇a(eν)b. (2.4.9)

Using the metric compatibility condition, the orthonormality of {(eµ)a} implies:

waµν = (eµ)b∇a(eν)b = −(eν)b∇a(eµ)b = −waνµ. (2.4.10)

This is the expression for (1) in the orthonormal basis approach. Note that the antisymmetry of the
Ricci rotation coefficients means it has n2(n − 1)/2 (= 24 when n = 4) independent components,
while the Christoffel symbol has n2(n+ 1)/2 (= 40 when n = 4) components.

The components of Rabcd in the orthonormal basis are

Rρσµν = Rabcd(eρ)
a(eσ)b(eµ)c(eν)d = (eρ)

a(eσ)b(eµ)c(∇a∇b −∇b∇a)(eν)c.
′ (2.4.11)

However, we have the following

(eµ)c∇a∇b(eν)c = ∇a{(eµ)c∇b(eν)c} − [∇a(eµ)c][∇b(eν)c]

= ∇a{(eµ)c∇b(eν)c} − [∇a(eµ)f ]δcf [∇b(eν)c]

= ∇a{(eµ)c∇b(eν)c} −
∑
α,β

ηαβ[∇a(eµ)f ](eα)c(eβ)f [∇b(eν)c]. (2.4.12)

18



From the definition of connection 1-forms, we obtain

Rρσµν = (eρ)
a(eσ)b{∇awbµν −∇bwaµν −

∑
α,β

ηαβ[waβµwbαν − wbβµwaαν ]} (2.4.13)

= (eρ)
a∇awσµν − (eσ)a∇awρµν

−
∑
α,β

ηαβ[wρβµwσαν − wσβµwραν + wρβσwαµν − wσβρwαµν ], (2.4.14)

where the last two terms compensate for taking the components of waµν inside the derivative in
the first two terms, and we can replace the derivatives ∇a by ∂a because they act on scalars. This
expresses requirement (3). The Ricci tensor is Rρν = ησνRρσµν .

To express requirement (2), we can use two approaches. The first one involves noting that Eq.
2.1.1 holds for all vector fields in a basis if and only ∇a is torsion free. We can then express (2) by
the commutation relations of the basis vector fields

(eσ)a[eµ, eν ]a = (eσ)a{(eµ)b∇b(eν)a − (eν)b∇b(eµ)a} = wµσν − wνσµ. (2.4.15)

This gives the n2(n− 1)/2 equations needed to solve for wσµν .
The second approach is to realize that from the definition of connection 1-forms we have

∇[a(eσ)b] =
∑
µ,ν

(eµ)[awb]σν . (2.4.16)

We can replace ∇ with ∂ here because the torsion fee condition implies that the antisymmetrized
derivative of a 1-form is independent of derivative operator. The converse is also true.

Eq. 2.4.13 and 2.4.16 can be expressed in the notations of differential forms by dropping the
dual index a and use boldface letters to designate forms:

w µ
ν =

∑
σ

ηµσwνσ. (2.4.17)

Then Eq. 2.4.13 and 2.4.16 become

R ν
µ = dw ν

µ +
∑
α

w α
µ ∧w ν

α (2.4.18)

deσ =
∑
µ

eµ ∧w µ
σ (2.4.19)

These are sometimes referred to as the equations of structure. In addition to the methods above,
there is a third “null tetrad” method by Newman and Penrose for calculating the curvature, and
we will not introduce it here.

3 Einstein’s Equation

3.1 The Geometry of Space in Prerelativity Physics; General and Special Co-
variance

In prerelativity physics space is assumed to have the manifold structure of R3 with Cartesian
coordinates. Many such rigid grid systems are possible and can be put into one-to-one corre-
spondence with elements of the six-parameter group of rotations and translations of R3. Thus the
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Cartesian coordinates (x1, x2, x3) of a point in space do not have any intrinsic meaning. How-
ever, the distance between two points x and x̄, defined in terms of Cartesian coordiantes by
D2 = (x1 − x̄1)2 + (x2 − x̄2)2 + (x3 − x̄3)2, is independent of the choice of Cartesian coordi-
nate system and describes an intrinsic property of space. This definition of distance gives rise to a
metric:

ds2 = (dx1)2 + (dx2)2 + (dx3)2, (3.1.1)

or in the index notation (in the Cartesian coordinate basis):

hab =
∑
µ,ν

hµν(dxµ)a(dx
ν)b, (3.1.2)

with hµν = diag(1, 1, 1). This definition is independent of the choice of Cartesian coordinate system.
Since the components of hab are constants, the ordinary derivative ∂a satisfies ∂ahbc = 0, and it is
metric compatible. The Christoffel symbols therefore vanish for this coordinate system. Also note
that ordinary derivatives commute on all tensors, the curvature (Eq. 2.2.2) vanishes, i.e. hab is
flat. Thus the prerelativity assumptions have led to the conclusion that space is the manifold R3

with a flat Riemannian metric defined on it (the converse is also true).
All physics experiments measure numbers, so all physical quantities must be reducible to num-

bers, thus tensor fields (maps from vector/dual vectors to numbers) encompass a wide range of
quantities. An important principle applies to the form of laws of physics in any descriptions of
space and is the motivation for SR and GR. the principle of general covariance states that the
metric of space is the only quantity pertaining to space that can appear in any laws of physics. The
italicized part, however, is not precisely defined.

To give an example of how this principle is violated. Consider a preferred vector field va, by
which we mean it is possible to choose a coordinate system such that va = (∂/∂x1)a. This vector
therefore is a quantity pertaining to space. If we write out an equation of physics without explicitly
incorporating va into the equation but rather substitute it with the components vµ = (1, 0, 0, ..., 0),
the form of the equation would not be preserved when we make a coordinate transformation which
would invalidate va = (∂/∂x1)a. We can also conclude that these equations are not tensor equations
because the components fail to transform according to the tensor transformation law (Eq. 1.3.9).
An implication of the principle of general covariance is that the Christoffel symbol Γcab cannot
appear in any laws of physics, because it is equivalent to specifying an ordinary derivative ∂a,
which is an additional geometric quantity pertaining to space not derivable from the metric (unless
∂a coincides with the metric compatible derivative and Γcab vanishes). In the other viewpoint,
Γcab cannot appear because it does not transform according to Eq. 1.3.9 under general coordinate
transformations.

The metric of space has a nontrivial number of isometries, including the six parameter group of
translations and rotations of R3 and the discrete parity symmetry. Consider a family of observers O
and another family of observers O′ obtained by acting on O with an isometry (distance preserving
transformations between metric spaces). The principle of special covariance states that any
physically possible set of measurements obtained by O is also a physically possible set for O′.
This principle implies the existence of an action of the isometry group on the state of the physical
fields being measured. It is closely related to the principle of general covariance. Suppose a
physical object is described by a tensor field T a...b.... General covariance requires that the equations
governing T a...b... involve only T a...b..., the metric hab, and quantities determined by the metric such
as the derivative operator. All quantities measurable by O can be expressed as scalars resulting
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from contracting T a...b... and its derivatives with O’s basis vector fields (eα)a. These assumptions
will lead to special covariance. Therefore we can view general covariance as a formulation of the
idea of special covariance in the absence of isometries.

Special covariance of the laws of physics for tensor fields implies that given a coordinate system,
if we write out the coordinate component equations without explicitly incorporating the metric but
rather with its components hµν , then the equations will be preserved under a special group of
coordinate transformations corresponding to the isometries.

3.2 Special Relativity

In special relativity, spacetime is assumed to have the manifold structure of R4 and there exist
preferred families of motion in spacetime (“inertial” or “nonaccelerating” motions). It is also
assumed that each event can be specified by the coordinates (t, x1, x2, x3), called the global inertial
coordinate system. Many such systems exist8, so the labels do not have intrinsic meaning, as
discussed at the beginning of the previous section. Similar to the distance in R3, the spacetime
interval I = −(x0 − x̄0)2 + (x1 − x̄1)2 + (x2 − x̄2)2 + (x3 − x̄3)2 is the same for all global inertial
coordinate systems and can be viewed as an intrinsic property of spacetime, and we define the
metric of spacetime by

ηab =
3∑

µ,ν=0

ηµν(dxµ)a(dx
ν)b (3.2.1)

with ηµν = diag(−1, 1, 1, 1). Again the ordinary derivative ∂a is metric compatible and is the
derivative operator associated with ηab. The commutativity of ∂a implies zero curvature for ηab.
Thus, SR asserts that spacetime is the manifold R4 with as flat metric of Lorentz signature (and
the converse). The principle of general covariance applies to SR mostly in the same way but with
one modification. Two further aspects, the space orientation and time orientation of spacetime,
can appear in physical laws9.

SR asserts that the paths in spacetime of material particles are always timelike curves, i.e.
nothing travels faster than light. Timelike curves can be parameterized by the proper time τ as
defined in Eq. 2.3.6 with gab replaced by ηab. According to SR, τ is the time that would elapse on
a clock carried along the given curve. The maximum elapsed time between two events is given by
the geodesic (i.e. inertial) motion.

The tangent vector ua to a timelike curve parameterized by τ is called the 4-velocity of the
curve and it has unit length, i.e. uaua = −1. With no external forces, a particle will travel on a
geodesic, i.e. ua∂au

b = 0. The 4-momentum of a particle with rest mass m is pa = mua, and
the energy (recognized as the time component of pa) as measured by an observer with 4-velocity
va at the site of the particle is E = −pava. We may define the energy as measured by a distance
observer to be the energy measured by an observer at the site with 4-velocity parallel to that of
the distant observer because parallel transport is path independent in a flat spacetime.

Continuous matter distributions are described by the symmetric stress-energy-momentum
tensor Tab. For an observer with 4-velocity va, the component Tabv

avb is interpreted as energy
density and is nonnegative for normal matter. If xa is orthogonal to va, we interpret the component
−Tabvaxb as the momentum density of the matter in the xa direction. If ya is also orthogonal to
va, then Tabx

ayb is the xa-ya component of the stress tensor as defined in section 1.3.

8They can be put into one-to-one correspondence with elements of the 10-parameter Poincaré group.
9For details of these aspects, see page 60 of Wald.
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A perfect fluid is defined to be a continuous distribution of matter with stress-energy tensor:

Tab = ρuaub + P (ηab + uaub), (3.2.2)

where ua represents the 4-velocity of the fluid. The functions ρ and P are the mass-energy density
and pressure respectively, as measured in the rest frame. This fluid is perfect in the sense that
there is no terms describing heat conduction or viscosity. The equation of motion of a perfect fluid
subject to no external forces is

∂aTab = 0. (3.2.3)

In terms of ρ, P and ua, and projecting the equation parallel and perpendicular to ub, we get

ua∂aρ+ (ρ+ P )∂aua = 0 (3.2.4)

(P + ρ)ua∂aub + (ηab + uaub)∂
aP = 0 (3.2.5)

In the nonrelativistic limit, P � ρ, uµ = (1, ~v), and v dPdt � |~∇P |; and these equations become

∂ρ

∂t
+ ~∇ · (ρ~v) = 0, (3.2.6)

ρ

{
∂~v

∂t
+ (~v · ~∇)~v

}
= −~∇P, (3.2.7)

which are the continuity (conservation of mass) equation and Euler’s equation, respectively.
Consider a family of inertial observers with parallel 4-velocities va so that ∂bv

a = 0. The above
interpretation of Tab gives us the mass-energy 4-current density of the fluid as measured by these
observers:

Ja = −Tabvb, (3.2.8)

and Eq. 3.2.3 implies ∂aJa = 0. Using Gauss’s law, this implies that over the three-dimensional
boundary S of any four-dimensional spacetime volume V , we have∫

S
Jan

adS = 0, (3.2.9)

where na is the unit normal vector. This equation implies conservation of energy, and Eq. 3.2.3
holds for all continuous matter distributions.

3.2.1 Examples: scalar field and electromagnetic field

No classical scalar field exists in nature, but we may still consider a scalar field φ satisfying the
Klein-Gordon equation

∂a∂aφ−m2φ = 0. (3.2.10)

The stress-energy tensor of this scalar field is

Tab = ∂aφ∂bφ−
1

2
ηab(∂

cφ∂cφ+m2φ2). (3.2.11)

In prerelativity physics, the electric field ~E and the magnetic field ~B are separate spatial vectors.
In SR, they are combined into a single, antisymmetric tensor field Fab, which has six independent
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components. For an observer with 4-velocity va, we interpret the quantity Ea = Fabv
b as the

electric field measured by the observer, and Ba = −1
2ε

cd
ab Fcdv

b as the measured magnetic field.
Here εabcd is the Levi-Civita symbol, a totally antisymmetric tensor of positive orientation with
norm εabcdε

abcd = −24. In a right-handed orthonormal basis we have ε0123. Thus, Maxwell’s
equations can be written as

∂aFab = −4πjb, (3.2.12)

∂[aFbc] = 0, (3.2.13)

where ja is the 4-current density of electric charge. The antisymmetry of Fab implies that ∂b∂aFab =
−4π∂bjb = 0, i.e. electric charge is conserved. The Lorentz force law is the equation of motion for
a particle of charge q

ua∂au
b =

q

m
F bcu

c. (3.2.14)

The stress-energy tensor of the electromagnetic field is

Tab =
1

4π

{
FacF

c
b −

1

4
ηabFdeF

de

}
. (3.2.15)

Both Tab’s above satisfiy the energy condition and Eq. 3.2.3. We may write Fab in terms of the
vector potential Aa:

Fab = ∂aAb − ∂bAa. (3.2.16)

Aa has a gauge freedom and the gauge transformation Aa → Aa + ∂aχ keeps Fab unchanged. If
impose the Lorenz gauge condition

∂aAa = 0, (3.2.17)

Maxwell’s equation becomes
∂a∂aAb = −4πjb, (3.2.18)

which may be solved with oscillating wave solutions of constant amplitude Aa = Ca exp (iS), where
S is the phase of the wave. According to the above equations, for ja = 0, S must satisfy the
following

∂a∂aS = 0, (3.2.19)

∂aS∂
aS = 0, (3.2.20)

Ca∂
aS = 0. (3.2.21)

Note for any function f on any manifold with a metric, ∇af is normal to the surfaces of constant
f . Eq. 3.2.20 states that the normal ka = ∂aS to surfaces of constant S is a null vector. Such
a surface is called a null hypersurface. Null hypersurfaces have their normal vector tangent
to the hypersurface. We can differentiate Eq. Eq. 3.2.20 to show that the integral curves of ka

are null geodesics. The frequency of the wave as measured by an observer with 4-velocity va is
ω = −va∂aS = −vaka. For plane waves,

S =
3∑

µ=0

kµx
µ, (3.2.22)

where {xν} are global inertial coordinates and kµ are constants. All well behaved solutions of
Maxwell’s equations which vanish at large spacial distances sufficiently rapidly can be expressed
as superpositions of plane waves. The above analysis suggests that light signals propagate on null
geodesics and gives rise to the idea of a light cone.
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3.3 General Relativity

Einstein did not develop a theory that generalizes Newton’s theory and make it compatible with
special relativity like what Maxwell did with electromagnetism. The primary motivation for his
development of a new theory include the equivalence principle (all bodies fall the same way in a
gravitational field) and Mach’s principle (all matter in the universe should contribute to the local
definition of “inertial motion”).

To see how these principles tie into the theory of gravitation, let us consider how we measure
the electromagnetic field in special relativity. We have inertial observers who are not subject to EM
forces or any other forces. We then release a charged test particle, whose world line should satisfy
the Lorentz force law. This allows us to determine Fab by observing the deviation from inertial
motion for the particle.

The problem of this method with gravity is that we cannot insulate the observer from the gravi-
tational force, as the observer will move exactly the same way as the test body. This means there is
no simple way of measuring the gravitational force field. Therefore, the theory of general relativity
makes the following hypothesis: the spacetime metric is not flat as was assumed in special relativity.
The world lines of freely falling bodies in a gravitational field are the geodesics of the curved space-
time metric. In this way, the “background observers” (geodesics of the spacetime metric) coincide
with what was previously viewed as motion in a “gravitational force field”, so gravity is viewed
instead as an aspect of spacetime structure. There is no meaning to an absolute gravitational force,
but relative gravitational force (tidal force) still has meaning and can be measured.

In the Newtonian viewpoint, the gravitational force on an object on Earth’s surface is balanced
by the force exerted by the surface. In GR, only the surface exerts a force, which makes the object
deviate from geodesic motion at a rate 9.8 m/s2. The object remains in a stationary state because
in the curved spacetime geometry near the Earth, the orbits of time translation symmetry are
different from the geodesics of the metric. This time translation symmetry allows us to define a
preferred set of background observers, and the Earth’s gravitational force field can be defined as
the negative acceleration an object need in order to remain stationary. Without time translation
symmetry, we cannot have a well defined gravity force.

General relativity allows a Lorentz metric gab to be curved and places no a priori restriction on
the spacetime manifold. It asserts that spacetime is curved in all situations where a gravitational
field is present, and Einstein’s equation relates the spacetime geometry to matter distribution. The
statement about the spacetime structure now becomes: Spacetime is a manifold M with a Lorentz
metric gab.

The laws of physics are governed by the principle of general covariance and the requirement that
equations can be reduced to the equations satisfied in special relativity when the metric is flat. Since
the only modification from SR is that the spacetime manifold can be different from R4, we can con-
tinue to represent physical quantities by the same type of tensor fields. We modify the equations sat-
isfied in SR by replacing ηab with gab and the operator ∂a with∇a (“minimal substitution”). Thus, a
free particle satisfies the geodesic equation ab = ua∇aub = 0, where ab is the (absolute) acceleration
of the particle. Unless specified, all equations in the previous section will change accordingly.

One importance difference is that parallel transport is now path dependent due to spacetime
being curved. This means we cannot define the energy of a distant particle for a given observer.
There is an altered interpretation for the modified Eq. 3.2.3:

∇aTab = 0 (3.3.1)
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A family of observers is represented by a unit timelike vector field va. If we can find a covariantly
constant va (i.e. ∇avb = 0), or ∇(avb) = 0 (Killing’s equation10), then ∇a(Tabvb) = 0. The
curved spacetime version of Gauss’s law again leads to conservation of energy. However, in curved
spacetime in general one cannot find a va satisfying vava = −1 and ∇(avb) = 0, and the conclusion
of energy conservation from Eq. 3.3.1 is only approximately true in a spacetime region of dimension
small compared with the radius of curvature, because tidal forces can do work on the fluid and
change its locally measured energy. Thus, Eq. 3.3.1 may be interpreted as a local conservation of
material energy over small regions of spacetime, and this holds for all matter and fields.

It is worth pointing out that in addition to the natural generalization of Eq. 3.2.10 using the
minimal substitution rule, other generalizations exist, such as

∇a∇aφ−m2φ− αRφ = 0. (3.3.2)

The generalized Maxwell’s equations allow us to introduce a vector potential Aa locally. However,
due to the commutation of derivatives, Eq. 3.2.18 has an explicit curvature term:

∇a∇aAb −RdbAd = −4πjb. (3.3.3)

Without the curvature term, this equation would not satisfy current conservation.
In situations where the spacetime scale of variation of the EM field is much smaller than that

of the curvature, we would again expect an oscillating wave solution for Maxwell’s equations, but
with nearly constant amplitude, i.e. derivatives of Ca are small. Substituting this solution into Eq.
3.3.3 and neglecting the small terms (∇b∇bCa and the Ricci term), we get ∇aS∇aS = 0. Under
this approximation (known as the geometrical optics approximation), the result suggests that
light travels on null geodesics.

We have described how the laws of physics and the motion of particles would change in a curved
spacetime. Mach’s principle would lead us to the question: how is the spacetime geometry influenced
by the matter distribution of the universe? To find the equation that describes the relation between
spacetime geometry and the matter distribution, we can compare the description of tidal force in
Newtonian gravity and GR. In the Newtonian theory, the gravitational field may be represented
by a potential φ, and the tidal acceleration of two nearby particles is given by −(~x · ~∇)~∇φ, where
~x is the separation vector. In GR, the tidal acceleration is given by −R a

cbd v
cxbvd according to Eq.

2.3.11, where va is the 4-velocity of the particles and xa is the deviation vector. This implies the
correspondence

R a
cbd v

cvd ↔ ∂b∂
aφ. (3.3.4)

Poisson’s equation11 tells us that:
∇2φ = 4πρ, (3.3.5)

where ρ is the mass/energy density of matter. As described before, in SR and GR the energy
properties of matter are described by Tab, so we have the correspondence

Tabv
avb ↔ ρ, (3.3.6)

10The solutions va are called the Killing vector field, often denoted ξa, which describes the direction of time
translation invariance.

11Note that we have GN = c = 1 throughout the text.
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where va is the 4-velocity of the observer. Combining the three equations above, we would get
R a
cad v

cvd = 4πTcdv
cvd, which suggests the field equation Rcd = 4πTcd. This is the equation origi-

nally postulated by Einstein. However, it has some problems. As discussed before, the stress tensor
satisfies ∇cTcd = 0. On the other hand, Eq. 2.2.13 tells us that ∇c(Rcd − 1

2gcdR) = 0. An equality
of Rcd and 4πTcd would imply ∇dR = 0, which means R, and hence T = T aa, is constant throughout
the universe. This is highly unphysical. This problem is resolved by Einstein’s equation:

Gab ≡ Rab −
1

2
Rgab = 8πTab, (3.3.7)

under which the Bianchi identity implies loval energy conservation. The correspondences that
motivated the previous equation are not destroyed. Taking the trace of Eq. 3.3.7, we find R = −8πT
and thus

Rab = 8π(Tab −
1

2
gabT ). (3.3.8)

In the Newtonian limit, the energy of matter as measured by an observer roughly at rest with respect
to the masses will be much greater than the material stresses, so we have T ≈ −ρ = −Tabvavb.
This leads to Rabv

avb ≈ 4πTabv
avb.

The entire content of general relativity may be summarized as follows: spacetime is a manifold
M with a Lorentz metric gab, whose curvature is related to the matter distribution in spacetime
by Einstein’s equation. Before we move on to the solutions of Einstein’s equation, here are a few
remarks: (1) Based on results in section 2.4.1, Einstein’s equation is equivalent to a coupled system
of nonlinear second order PDEs for the metric components gµν ; (2) Although Einstein’s equation
is analogous to Maxwell’s equation in some sense, we must solve simultaneously for gab and Tab
because Tab depends on the metric, while in the latter’s case one may find Aa simply by specifying
ja; (3) Einstein’s equation implies the equations of motion ∇aTab = 0, as well as the geodesic
hypothesis that the world lines of test bodies are geodesics of the spacetime metric.

3.3.1 Einstein-Hilbert action

Alternatively, we can obtain Einstein’s equation through the principle of least action, and the action
in this case is given by

S =
1

16π

∫
M
d4x
√
−gR+ (Smatter) (3.3.9)

This is the Einstein-Hilbert action. The variation gab → gab+δgab produces Einstein’s equation,
in which Tab would be represented by

Tab = − 2√
−g

δSmatter

δgab
. (3.3.10)

The simplest extension to the Einstein-Hilbert action, however, is the cosmological constant Λ,
which corresponds to an ideal fluid with P = −ρ:

S =
1

16π

∫
M
d4x
√
−g(R− 2Λ), (3.3.11)

where the factor of 2 is by convention. This yields

Rab −
1

2
gabR+ Λgab = 8πTab (3.3.12)
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An example of the extension Smatter is the action of the scalar field and the EM field

Smatter =
1

2

∫
d4x
√
−g(−∇aφ∇aφ−m2φ2)− 1

4e2

∫
d4x
√
−g(gacgbdFabFcd). (3.3.13)

While varying the E-H action, we would come across a surface term, which needs to be canceled
by adding an additional term in the action

1

8π

∫
∂M

d3xK, (3.3.14)

where K = habKab and Kab = ∇anb is the change of the unit normal of the manifold M . ∂M is
the surface of M , and

hab = gab ± nanb (3.3.15)

is the induced metric on ∂M , with +/− corresponding to a spacelike/timelike ∂M . Note that
nahab = nb + (nana)nb = 0. This K describes the extrinsic curvature on the boundary of the
region.

3.4 Linearized Gravity

In this section we consider the case in which gravity is weak. In the context of GR this means the
spacetime metric is nearly flat, and we can treat this problem in a perturbative way, i.e. we write
the metric and inverse metric as

gab = ηab + γab, (3.4.1)

gab = ηab − γab, (3.4.2)

with the perturbation γab being small. In this context, small means the components γµν in some
global inertial coordinate system is much smaller than 1. “linearized gravity” is the approximation
to GR obtained by substituting Eq. 3.4.1 for gab in Einstein’s equation and retaining terms linear
in γab. We will raise and lower tensor indices with ηab and ηab instead of gab and gab, in order not
to have γab hidden in a raised or lowered index.

In a global inertial coordinate system, to linear order in γab the Christoffel symbol is

Γcab =
1

2
ηcd(∂aγbd + ∂bγad − ∂dγab) (3.4.3)

and the Ricci tensor is
R

(1)
ab = ∂cΓ

c
ab − ∂aΓccb. (3.4.4)

Defining γ̄ab ≡ γab − 1
2ηabγ, where γ = γcc, the linearized Einstein equation is

G
(1)
ab = R

(1)
ab −

1

2
ηabR

(1) = −1

2
∂c∂cγ̄ab + ∂c∂(bγ̄a)c −

1

2
ηab∂

c∂dγ̄cd = 8πTab. (3.4.5)

There is a gauge freedom in GR corresponding to the group of diffeomorphisms. If φ : M →M
is a diffeomorphism of spacetime, then the metrics gab and φ∗gab represent the same spacetime
geometry, where φ∗ is the map on tensor fields induced by φ:

(φ∗T )a1,...,akb1,...,bl(µ1)b1 ...(µk)bk(t1)a1 ...(tl)
al

= T a1,...,akb1,...,bl(φ
∗µ1)b1 ...(φ∗µk)bk([φ−1]∗t1)a1 ...([φ−1]∗tl)

al . (3.4.6)
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In section 1.2, we mentioned that an infinitesimal diffeomorphism is generated by a vector field
ξa, and the change in a tensor field induced by this diffeomorphism defines a Lie derivative Lξ.
In the linear approximation, this gauge freedom implies that two perturbations γab and γab +
Lξηab represent the same physical perturbation since they differ by the action of an infinitesimal
diffeomorphism on ηab. Note that Lξηab = ∂aξb + ∂bξa, so the gauge freedom can be expressed as

γab → γab + ∂aξb + ∂bξa. (3.4.7)

This is analogous to the gauge freedom of the electromagnetic vector potential Aa. This gauge
freedom allows us to simplify the linearized Einstein equation. By solving ∂b∂bξa = −∂bγ̄ab for ξa,
we can make a gauge transformation to obtain a condition analogous to the Lorenz gauge:

∂bγ̄ab = 0. (3.4.8)

This condition gives the simplified linearized Einstein equation:

∂c∂cγ̄ab = −16πTab. (3.4.9)

In vacuum (Tab = 0), Eq. 3.4.8 and 3.4.9 describe a massless spin-2 field propagating in flat
spacetime. Thus we may view GR as a theory of a massless spin-2 field that undergoes nonlinear
self-interaction.

3.4.1 The Newtonian limit

In order to test the validity of the theory of GR, we can check the Newtonian limit, in which we
assume the following: (1) gravity is weak; (2) relative motion of the sources is much smaller than
c (i.e. we may neglect the “time-space” components of Tab); and (3) the material stress is much
smaller than the mass-energy density (i.e. we may neglect the “space-space” components of Tab).

Given (1), the linear approximations to GR should be valid, and we can incorporate the other
assumptions into the following statement: there exists a global inertial coordinate system of ηab
such that Tab ≈ ρtatb, where ta = (∂/∂x0)a is the time direction of the system. Since the sources
are slowly varying, we also assume the time derivatives of γ̄ab are negligible, and we arrive at the
following equation:

∇2γ̄µν = −16πρ 2δµ0δν0. (3.4.10)

The only solution for γµν (µ 6= ν) that is well behaved at infinity is γ̄µν = 0, so the solution for the
perturbed metric γab is

γab = γ̄ab −
1

2
ηabγ̄ = −(4tatb + 2ηab)φ (3.4.11)

where φ ≡ −1
4 γ̄00 satisfies Poisson’s equation ∇2φ = 4πρ. The motion of test bodies in this curved

spacetime geometry is governed by the geodesic equation (Eq. 2.3.3 with τ). For v � c, we may
approximate dxα/dτ as (1, 0, 0, 0) and the proper time τ is roughly the coordinate t, so we have

d2xµ

dt2
= −Γµ00 =

1

2

∂γ00

∂xµ
= − ∂φ

∂xµ
. (3.4.12)

This is the familiar equation
~a = −~∇φ. (3.4.13)
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If we take into account the lowest order effects of the motion of the sources, we can approximate
the stress energy tensor as

Tab = 2t(aJb) − ρtatb, (3.4.14)

where Jb = −Tabta is the mass-energy 4-current density. The space-space components of γ̄ab again
satisfy the source free wave equation, but the other components now satisfy

∂a∂aγ̄0µ = 16πJµ. (3.4.15)

The quantity −1
4 γ̄abt

b satisfies Maxwell’s equations in the Lorenz gauge and we can interpret it as
a vector potential Aa. With the same assumptions about γ̄ab as before, we can get

~a = − ~E − 4~v × ~B, (3.4.16)

where ~E and ~B are defined the same way in terms of Aa as in electromagnetism. This is similar to
the Lorentz force law except for an overall minus sign and an extra factor of 4.

3.4.2 Gravitational radiation

GR implies the existence of gravitational radiation, similar to how Maxwell’s equations led to
electromagnetic radiation. The propagation of gravitational radiation can be described by the
source-free, linearized Einstein equation with the Lorenz gauge choice:

∂aγ̄ab = 0, (3.4.17)

∂c∂cγ̄ab = 0. (3.4.18)

Here we will choose the Coulomb gauge (a.k.a. radiation gauage), ∂b∂bξ
a = 0, which leaves Eq.

3.4.17 unchanged. We use this condition to achieve γ = 0, γ0µ = 0 for µ = 1, 2, 3 in a source free
region. If no sources are present throughout spacetime, we also get γ00. The radiation gauge can
be achieve by solving for the initial values and first derivatives of the four components of ξa in the
following equations on the initial surface t = t0:

2

(
−∂ξ0

∂t
+ ~∇ · ~ξ

)
= −γ, (3.4.19)

2

[
−∇2ξ0 + ~∇ ·

(
∂~ξ

∂t

)]
= −∂γ

∂t
, (3.4.20)

∂ξµ
∂t

+
∂ξ0

∂xµ
= −γ0µ (µ =1, 2, 3), (3.4.21)

∇2ξµ +
∂

∂xµ

(
∂ξ0

∂t

)
= −∂γ0µ

∂t
(µ = 1, 2, 3). (3.4.22)

Under the radiation gauge, γ = 0, γ00 = 0, and γ0µ = 0 for µ = 1, 2, 3. Eq. 3.4.17 then gives us

∂γ00

∂t
= 0, (3.4.23)

and the linearized Einstein equation becomes:

∇2γ00 = −16πT00. (3.4.24)
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This equation yields a constant solution for γ00 that can be transformed to 0 if T00 = 0 throughout
the spacetime.

Using this radiation gauge, solutions to the source free linearized Einstein equation (Eq. 3.4.18)
are plane waves:

γab = Hab exp

i 3∑
µ=0

kµx
µ

, (3.4.25)

where Hab is a constant tensor field, if and only if∑
µ

kµx
µ =

∑
µ,ν

ηµνkµxν = 0. (3.4.26)

The radiation gauge conditions require (for ν = 0, 1, 2, 3)

3∑
µ=0

kµHµν = 0, (3.4.27)

H0ν = 0, (3.4.28)
3∑

µ=0

Hµ
µ = 0. (3.4.29)

The last two equations both imply
∑

ν H0νk
ν = 0, so only eight of these nine equations are in-

dependent. Since there are 10 independent components Hµν , we have two linearly independent
solutions for Hab, which describe the two polarization states of gravitational waves.

The most straightforward way to detect gravitational waves is to measure the gravitational tidal
force (relative acceleration) of two masses. This is described by the geodesic deviation equation
(Eq. 2.3.11) for two nearby free falling bodies. Note that in the Newtonian limit, τ ≈ t:

d2Xµ

dt2
≈
∑
ν

R µ
ν00 X

ν , (3.4.30)

where xa is the deviation vector. In the radiation gauge, we can use Eq. 2.4.2 to get an expression
for the relevant components of the linearized Riemann tensor:

Rν00µ =
1

2

∂2γµν
∂t2

. (3.4.31)

Strong gravitational waves are produced by sources such as collapse phenomena where gravity
is not weak and the linear approximation cannot be used. For the purpose of illustrating the gener-
ation of radiation, we will stick with the linear approximation and solve Eq. 3.4.9, and the solutions
are given in terms of the sources by the retarded Green’s function as used in electromagnetism:

γ̄µν(x) = 4

∫
Λ

Tµν(x′)

|~x− ~x′|
dS(x′), (3.4.32)

where Λ is the past lightcone of the point x, and the volume element on the lightcone is dS = r2drdΩ.
In the slow motion limit, where the typical source velocities are much smaller than c (or the

spatial extent of the source is much smaller than the wavelength of the emitted radiation), we can
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make the dipole approximation. We first Fourier transform all quantities in the time variable
as follows:

ˆ̄γµν(ω, ~x) =
1√
2

∫ ∞
−∞

γ̄µν(t, ~x)eiωtdt. (3.4.33)

From Eq. 3.4.32 it follows that

ˆ̄γµν(ω, ~x) = 4

∫
T̂µν(ω, ~x′)

|~x− ~x′|
exp (iω|~x− ~x′|)d3x′. (3.4.34)

We only need to solve for the space-space components of ˆ̄γµν since we can use Eq. 3.4.8 to find ˆ̄γ0µ:

− iωˆ̄γ0µ =
3∑

ν=1

∂ ˆ̄γνµ
∂xν

. (3.4.35)

For simplicity, let us consider the far zone radiation, i.e. R� 1/ω, wher R is the distance from
the source. In this case, the factor exp (iω|~x− ~x′|) is roughly constant over the source, so we can

replace exp (iω|~x−~x′|)
|~x−~x′| with exp (iωR)

R and pull it out of the integral. The remaining integral is∫
T̂µνd3x = ... = −ω

2

2

∫
T̂ 00xµxνd3x ≡ −ω

2

6
q̂µν , (3.4.36)

where q̂µν is the Fourier transform of the quadrupole moment tensor, and I omitted several steps
involving integration by parts and applications of Gauss’s law and conservation of Tab. The far
zone solution is therefore

ˆ̄γµν(ω, ~x) = −2ω2

3

eiωR

R
q̂µν(ω) (µ, ν = 1, 2, 3), (3.4.37)

and the inverse Fourier transform yields

γ̄µν(t, ~x) =
2

3R

d2qµν
dt2

∣∣
ret

(µ, ν = 1, 2, 3), (3.4.38)

where the derivative is evaluated at t′ = t − R. The absence of dipole radiation in this case can
be attributed to the conservation of momentum, and this implies gravitational radiation is smaller
than the electromagnetic radiation in comparable situations.

The notion of local energy density is hard to define in GR, because the metric gab describes both
the background spacetime structure and the dynamical aspects of the gravitational field. However,
we may define a total energy for an isolated system observed at large distances. For small deviations
from flat spacetime, we can expect that the total energy and energy flux of the gravitational field are
quadratic in the field γab, in analogy to electromagnetism. We start by considering the linearized
vaccum Einstein equation

G
(1)
ab [γcd] = 0, (3.4.39)

which states that the Einstein tensor for the metric ηab+γab vanishes to first order in γab. However,
to second order in γab, this equation will not be satisifed in general, and the Ricci tensor quadratic
in γab is

R
(2)
ab =

1

2
γcd∂a∂bγcd − γcd∂c∂(aγb)d +

1

4
(∂aγcd)∂bγ

cd + (∂dγcb)∂[dγc]a

+
1

2
∂d(γ

dc∂cγab)−
1

4
(∂cγ)∂cγab − (∂dγ

cd − 1

2
∂cγ)∂(aγb)c. (3.4.40)
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Thus, in order to maintain a solution for the vacuum Einstein equation, we must correct γab by

adding to it a term γ
(2)
ab , which satisfies

G
(1)
ab [γ

(2)
cd ] +G

(2)
ab [γcd] = G

(1)
ab [γ

(2)
cd ]− 8πtab = 0, (3.4.41)

where we have G
(2)
ab = R

(2)
ab −

1
2ηabR

(2) in the case R
(1)
ab = 0, and tab = − 1

8πG
(2)
ab [γcd]. Thus, we may

view tab as the effective stress-energy tensor valid to second order in deviation from flatness, but
we cannot take this interpretation too literally because tab is not gauge invariant. However, the
total energy associated with γab,

E =

∫
Σ
t00d

3x (3.4.42)

is gauge invariant because the inertial components of γab and its derivatives go to zero as r →∞:
γµν = O(1/r), ∂ργµν = O(1/r2), and ∂γ∂ργµν = O(1/r3), and the perturbed spacetime metric is
asymptotically flat (note these conditions are not appropriate in the time dependent regime because
we expect ∂ργµν = O(1/r) from Eq. 3.4.32). Similarly, although the local energy flux −ta0 is not
gauge invariant, the total radiated energy

∆E = −
∫
S
ta0dS

a (3.4.43)

is gauge independent if the spacetime is initially time independent and ends up being time inde-
pendent. We can calculate from Eq. 3.4.41 and 3.4.43 the enrgy carried away by gravitational
radiation produced by a slowly varying source:

∆E =

∫
P dt =

1

45

3∑
µ,ν=1

∫ (
d3Qµν
dt3

∣∣
ret

)2

dt, (3.4.44)

where Qµν is the trace free quadrupole moment tensor

Qµν = qµν −
1

3
δµνq. (3.4.45)

As an example, the gravitational energy flux from a rod of mass M and length L that spins about
its center at frequency Ω (Tab oscillates at 2Ω) is

Prod =
2G

45c5
M2L4Ω6. (3.4.46)

4 Homogeneous, Isotropic Cosmology

4.1 Homogeneity and Isotropy

In cosmology, we must realize that the observational data only covers a small region in the universe,
and we must rely on certain philosophical prejudices in the development of cosmological models.
Two commonly accepted assumptions are that we do not occupy a privileged position in our universe
and the basic characteristics of our surroundings would be the same if we were at a different region
in the universe (homogeneity), and that there are no preferred directions in space (isotropy). These
assumptions have been confirmed on the largest scales through observations.
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We will give mathematical definitions to these assumptions. A spacetime is said to be homo-
geneous if there exists a one-parameter family of spacelike hypersurfaces Σt such that for each t
and for any points p, q ∈ Σt there exists an isometry of the spacetime metric gab that takes p into q.
As for isotropy, we must point out that at each point, at most one observer can see the universe at
isotropic, and any observer with a relative motion to the matter distribution will see an anisotropic
velocity distribution of matter. A spacetime is spatially isotropic at each point if there exists a
congruence of timelike curves (observers) with tangents ua filling the spacetime and satisfying the
following property: given any point p and two unit spatial tangent vectors sa1, s

a
2 ∈ Vp (i.e. vectors

at p orthogonal to ua), there exists an isometry of gab which leaves p and ua fixed but rotates sa1
into sa2. It is therefore impossible to construct a geometrically preferred tangent vector orthogonal
to ua in an isotropic universe.

With the above definitions, it is easy to see that the surfaces Σt of homogeneity are orthogonal
to the tangents ua to the world lines of isotropic observers. The spacetime metric gab induces
a Riemannian metric hab(t) on each surface by restricting the action of gab at each p to vectors
tangent to Σt. The assumptions of homogeneity and isotropy place the following requirements on
the induced geometry of Σt: (1) there must be isometries of hab that carry p ∈ Σt into any q ∈ Σt;
(2) it is impossible to construct any geometrically preferred vectors on Σt.

Consider the Riemann tensor (3)R d
abc constructed from hab on Σt. If we raise the third index, we

may view (3)R cd
ab at point p as a linear map L : W →W , where W is the vector space of two forms,

i.e. antisymmetric rank (0, 2) tensors, at p. By the symmetric property of the Riemann tensor, L
is symmetric and is a self-adjoint map. Therefore, W has an orthonormal basis of eigenvectors of
L. If the eigenvalues are distinct, the we would be able to pick out a preferred two-form at p and
therefore a preferred vector at p. Thus, to not violate isotropy, all eigenvalues of L must be equal,
meaning that L is a multiple of the identity operator:

L = K1. (4.1.1)

Thus, we have
(3)R cd

ab = Kδc[aδ
d
b] and (3)Rabcd = Khc[ahb]d. (4.1.2)

Both homogeneity and isotropy require that K must be a constant and it cannot vary from point
to point on Σt. We can show this by plugging Eq. 4.1.2 into the Bianchi identity to obtain

0 = D[e
(3)Rab]cd = (D[eK)h|c|ahb]d, (4.1.3)

where Da denotes the derivative operator associated with hab on Σt. On a manifold of dimension
three or higher, the right hand side of this equation will vanish if and only if DeK = 0, i.e. K is
constant.

A space where Eq. 4.1.2 is satisfied is called a space of constant curvature. It can be shown
that any two such spaces of the same dimension and metric signature with equal values of K must
be locally isometric. Thus, we may enumerate spaces of constant curvature for all values of K to
determine the possible spatial geometries of Σt. All positive values of K are attained by 3-spheres,
defined as surfaces in R4 whose Cartesian coordiantes satisfy

x2 + y2 + z2 + w2 = R2. (4.1.4)

In spherical coordinates, the metric of the unit 3-sphere is

ds2 = dψ2 + sin2 ψ(dθ2 + sin2 θdφ2). (4.1.5)
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K = 0 is attained by the ordinary three-dimensional flat space with metric ds2 = dx2 + dy2 + dz2.
All negative values of K are attained by the three-dimensional hyperboloids, defined as surfaces
in a four dimensional flat Lorentz signature space (Minkowski spacetime) whose global inertial
coordinates satisfy

t2 − x2 − y2 − z2 = R2. (4.1.6)

In hyperbolic coordinates, the metric of the unit hyperboloid is

dψ2 + sinh2 ψ(dθ2 + sin2 θdφ2) (4.1.7)

In prerelativity physics as well as special relativity, it is assumed that K = 0. It is worth
pointing out that the 3-sphere spatial geometry of the positive K case gives us a compact manifold
that describes a finite universe with no boundary. We refer to this as a “closed” universe, while
universes described by the other two possibilities are called “open.”

Since the isotropic observers are orthogonal to the homogeneous surfaces, we can write gab as

gab = −uaub + hab(t), (4.1.8)

where for each t, hab(t) is the metric of either a sphere, a flat Euclidean space, or a hyperboloid
on Σt. We choose the appropriate coordiantes on the hypersurfaces, and carry these coordinates
to each of the other homogeneous hypersurfaces by assigning a fixed spatial coordinate label to
each observer. We label each hypersurfaces by the proper time τ of any of the isotropic observers.
Thus, we can label each event in the universe with τ and the spatial coordinates, and the spacetime
metric is given by

ds2 = −dτ2 + a2(τ)


dψ2 + sin2 ψ(dθ2 + sin2 θdφ2)

dψ2 + ψ2(dθ2 + sin2 θdφ2) (= dx2 + dy2 + dz2)

dψ2 + sinh2 ψ(dθ2 + sin2 θdφ2)

(4.1.9)

where a(τ) is some arbitrary positive function called the scale factor. Eq. 4.1.9 is called the
Friedmann-Robertson-Walker metric. We will use Einnstein’s equation to determine the spatial
geometry and a(τ).

4.2 Dynamics of a Homogeneous, Isotropic Universe

We can substitute Eq. 4.1.9 into Einstein’s equation to obtain predictions for the dynnamical
evolution of the universe. To do so, we need to first describe the matter content in terms of the
stress-energy Tab. On the cosmic scales, we can treat the galaxies as “grains of dust.” The random
velocities of the galaxies are small, so we may neglect the “pressure” of these galaxy dusts. Thus,
we may approximate the stress-energy tensor of matter in the present universe as

Tab = ρuaub, (4.2.1)

where ρ is the average mass density of matter. However, there exists other forms of mass-energy in
the universe. The cosmic microwave background, for example, may be described by a perfect fluid
stress-energy tensor with nonzero pressure (for massless radiation, P = 1

3ρ). The contribution of
this radiation to the stress-energy of the present universe is negligible, but it is important in the
early universe. Thus, we will take Tab to have the general perfect fluid form

Tab = ρuaub + P (gab + uaub). (4.2.2)
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By plugging Eq. 4.1.9 and 4.2.2 into Einstein’s equation, we will get 10 equations corresponding
to the 10 independent components of a symmetric two-index tensor. However, spacetime symmetries
reduce these down to two independent equations. Namely, Gabub cannot have a spatial component,
which would violate isotropy, so the “time-space” components of Einstein’s equation are identically
zero. If we project both indices of Gab onto the homogeneous hypersurface and raise an index with
hab, then by a similar argument we have that the resulting tensor is a multiple of the identity.
Thus, the off-diagonal “space-space” components of Einstein’s equation must vanish. The diagonal
“space-space” components yield the same equations, so we have

Gττ = 8πTττ = 8πρ, (4.2.3)

G∗∗ = 8πT∗∗ = 8πP, (4.2.4)

where Gττ = Gabu
aub and G∗∗ = Gabs

asb. sa is any unit vector tangent to the homogeneous
hypersurfaces.

We will compute Gττ and G∗∗ in terms of a(τ) for the case of flat spatial geometry using the
coordinate basis method. By Eq. 2.1.14, the nonvanishing components of the Christoffel symbol
are

Γτxx = Γτyy = Γτzz = aȧ, (4.2.5)

Γxxτ = Γxτx = Γyyτ =Γyτy = Γzzτ = Γzτz = ȧ/a, (4.2.6)

where ȧ = da/dτ . The independent components of the Ricci tensor are calculated to be

Rττ = −3
ä

a
, (4.2.7)

R∗∗ = a−2Rxx =
ä

a
+ 2

ȧ2

a
, (4.2.8)

R = −Rττ + 3R∗∗ = 6

(
ä

a
+
ȧ2

a2

)
, (4.2.9)

Thus we have

Gττ = Rττ +
1

2
R = 3

ȧ2

a2
= 8πρ, (4.2.10)

G∗∗ =R∗∗ −
1

2
R = −2

ä

a
− ȧ2

a2
= 8πP. (4.2.11)

Repeating the calculation for the cases of spherical and hyperbolic geometries, and rewriting the
second equation, we get the general evolution equations for homogeneous, isotropic cosmology:

ȧ2

a2
=

8πρ

3
− k

a2
, (4.2.12)

ä

a
= −4π

3
(ρ+ 3P ), (4.2.13)

where k = +1 for the 3-sphere, k = 0 for flat space, and k = −1 for the hyperboloid. Eq. 4.2.12
is often known as the Friedmann equation. Eq. 4.2.13 is sometimes called the acceleration
equation. We may solve these equations exactly for some special cases, such as a matter/dust
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dominated universe (P = 0) and a radiation dominated universe (P = ρ/3), the results are listed
in Table 5.1 of Wald.

Eq. 4.2.12 and 4.2.13 imply that the universe cannot be static if ρ > 0 and P ≥ 0. The universe
must always be either contracting or expanding. Note that the distance scale between all isotropic
observers changes with time, but there is no preferred center of expansion or contraction. If the
distance between two isotropic observers at time τ is R, the rate of change of R is

v ≡ dR

dτ
=
R

a

da

dτ
= HR, (4.2.14)

where H(τ) = ȧ/a is the Hubble parameter. Eq. 4.2.14 is known as Hubble’s law. Note that v
can be greater than the speed of light for large enough R, but this does not contradict the theory of
relativity because the postulate refers to the locally measured relative velocity between two objects
at the same spacetime event, not a globally defined velocity between two distance objects.

Although various observations have confirmed the prediction of GR, Einstein was not happy
with the prediction of a dynamic universe, and he proposed a modification of his equation by adding
a new term:

Gab + Λgab = 8πTab, (4.2.15)

where Λ is the cosmological constant. It can be shown that Eq. 4.2.15 gives the most general
modification which does not grossly alter the basic properties of Einstein’s equation. With this
additional one-parameter degree of freedom, a static universe is possible. The original motivation for
the introduction of Λ was lost after Hubble demonstrated the expansion of the universe. However,
Λ has since been reintroduced on many occasions to account for discrepancies between theory and
observations.

Given that the universe is expanding (ȧ > 0), we know from Eq. 4.2.13 that ä < 0 (this is not
true at the present time with a nonzero Λ). These observations would suggest that at some point
in the distant past, we have a = 0, and this is referred to as the big bang. Since the spacetime
structure itself is singular at the big bang, it does not make sense to ask about the state of the
universe before the big bang, and there is no natural way to extend the spacetime manifold and
metric beyond the singularity. It is important to point out, however, at the extreme conditions very
near the big bang singularity, one expects quantum effects to become important and the predictions
of GR should breakdown.

Before we discuss the qualitative predictions of GR for the future evolution of the universe, it
is useful to obtain an equation for the evolution of the mass density. By manipulating Eq. 4.2.12
and 4.2.13, we have a statement about energy-momentum conservation:

ρ̇+ 3(ρ+ P )
ȧ

a
= 0. (4.2.16)

In order to obtain solutions of Eq. 4.2.12 and 4.2.13, it is often convenient to characterize the
different components of the universe with an equation of state, given by

P = wρ, (4.2.17)

where the parameter w depends on the property of the component. For dust/non-relativistic
matter, w = 0; for radiation, w = 1

3 ; for the cosmological constant, w = −1. We usually consider
the condition −1 ≤ w ≤ 1, where the lower bound is given by the null energy condition (for all null
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vectors kµ, Tµνk
µkν ≥ 0) and the upper bound is given by the causal energy condition. Solving

Eq. 4.2.16 with our new parameterization, we get

ρ ∝ a−3(1+w), (4.2.18)

For dust (w = 0), we find ρa3 = constant, which expresses conservation of rest mass; for radiation
(w = 1/3), we find ρa4 = constant. The energy density decreases more rapidly for radiation as
a increases. We can think in terms of photons: the photon number density decreases as a−3, but
each photon loses energy as a−1 due to redshift. This result also confirms that the contribution of
radiation to the total energy density dominates over that of ordinary matter in the early universe.

Plugging Eq. 4.2.18 into Eq. 4.2.12 to eliminate ρ, we can see that for a flat, single component
universe,

a(τ) ∝ τ
2

3(1+w) . (4.2.19)

We see that in a matter dominated universe, a(τ) ∝ τ2/3; in a radiation dominated universe,
a(τ) ∝ τ1/2; and in the case of w = −1, a(τ) ∝ eCτ , where C is a constant. The solution for the
dust-filled universe with 3-sphere geometry is called the Friedmann cosmology.

Assuming the universe has three major components (matter, radiation, and the cosmological
constant), it is often convenient to rearrange Eq. 4.2.12 and divide both sides by H2 to obtain

1 =
ρm

ρc
+
ρrad

ρc
+
ρΛ

ρc
− k

a2H2
≡ Ωm + Ωrad + ΩΛ + Ωk, (4.2.20)

where ρc ≡ 3H2

8πGN
. Ωi is called the density parameter. Equation 4.2.20 gives a simplified description

of how the various components contributes to the expansion and curvature of the universe. Quali-
tatively, Eq. 4.2.12 shows that if k = 0 or −1, ȧ can never be zero, so if the universe is currently
expanding, it will continue to expand forever. However, it also shows that for k = +1, the universe
cannot expand forever and there exists a critical value ac such that a ≤ ac. Experiments have
shown that k is very close to 0, so it is reasonable for us to work with the flat geometry when
solving Eq. 4.2.12.

4.3 The Cosmological Redshift; Horizons

4.3.1 Redshift

Suppose that at event p1 at time τ1 an isotropic observer emits a photon of frequency ω1, and this
photon is observed by another isotropic observer at event p2 at time τ2. We wish to find ω2, the
frequency measured by the second observer.

The solution of all redshift problems in relativity is governed by two facts: (1) in the geometric
optics approximation, light travels on null geodesics; (2) the frequency of a light signal of wave
vector ka measured by an observer with 4-velocity ua is ω = −kaua. Thus, we can always calculate
the null geodesic determined by the initial values of ka at the emission point and then the frequency
at the observation point.

However, with symmetries, we may use a shortcut for the calculation of the observed frequency.
Let ξa be a Killing vector field, i.e. a vector field that generates a one-parameter group of isometries.
Let ta be the tangent to the geodesic curve. Then taξa is constant along the geodesic. We may
notice that for all three choices of spatial geometry, we can find a spacetime ξa that points in the
direction of the projection of ka onto Σ1 at p1 and points in the direction of the projection of ka
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onto Σ2 at p2. For example, in the case of flat spatial geometry, without loss of generality, we
may assume that the projection of ka onto Σ1 at p1 is in the (∂/∂x)a direction. We initially have
ka(∂/∂y)a = ka(∂/∂z)a = 0, and since (∂/∂y)a and (∂/∂z)a are Killing vector fields, these inner
products must also vanish at p2. Thus, teh projection of ka onto Σ2 at p2 also points in the (∂/∂x)a

direction. In all cases, the length of ξa at p2 changes from its length at p1 in proportion to the
change in the length scale factor a of the universe in going from Σ1 to Σ2:

√
ξaξa|p1√
ξaξa|p2

=
a(τ1)

a(τ2)
. (4.3.1)

We note that since ka is null, at any point its projection onto ua must have the same magnitude
as its projection onto Σ, so at p1

kau
a
1 = −ka

[
ξa√
ξbξb

] ∣∣
p1
. (4.3.2)

Thus we have

ω1 =

[
kaξ

a√
ξbξb

] ∣∣
p1
, and ω2 =

[
kaξ

a√
ξbξb

] ∣∣
p2
. (4.3.3)

We have already shown that the inner product kaξ
a is invariant, so we have

ω2

ω1
=

√
ξaξa|p1√
ξaξa|p2

=
a(τ1)

a(τ2)
. (4.3.4)

This implies that the wavelength of each photon increases in proportion to the amount of expansion
of the universe. Note that this notion of redshift is different from the Doppler shift. It describes
the stretch of the wavelength between two observers at rest in the isotropic frame. The redshift
factor is given by

z ≡ λ2 − λ1

λ1
=
ω1

ω2
− 1 =

a(τ2)

a(τ1)
− 1. (4.3.5)

For light from nearby galaxies we have τ2 − τ1 ≈ R where R is the present proper distance to the
galaxy. Using the approximation a(τ2) ≈ a(τ1) + (τ2 − τ1)ȧ we can get the linear redshift-distance
relationship discovered by Hubble: z ≈ H0R.

4.3.2 Particle horizons

We may ask the question: how much of our universe can be observed at a given event p? Or more
preciesly, which isotropic observers could have sent a signal that reaches a given isotropic observer
at or before p? The boundary between the world lines that can be seen at p and those that cannot
is called the particle horizon at p. We may expect that all isotropic observers can communicate
with each other near the big bang singularity, but this not the case for Robertson-Walker models
which expand sufficiently fast from the initial big bang singularity. We will demonstrate this in the
flat spatial geometry with the metric specified in Eq. 4.1.9.

We can make a coordinate transformation τ → η defined by

η =

∫
dτ

a(τ)
(4.3.6)
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so that we can express the metric as

ds2 = a2(η)(−dη2 + dx2 + dy2 + dz2). (4.3.7)

This metric is just a multiple of the flat Minkowski metric and is called conformally flat. The
coordinate η is called the conformal time. A vector will be timelike, null, or spacelike in Eq.
4.3.7 if and only if it has the same property with respect to the flat Minkowski metric. It is then
not difficult to see that an observer at an event p will be able to receive a signal from all other
isotropic observers if and only if the integral defining η in Eq. 4.3.6 diverges as τ → 0 (approaching
the big bang singularity), which will be the case if a(τ) ≤ ατ for some constant α, and there will
be no particle horizon. However, if the integral converges, the Robertson-Walker model will be
conformally related to only a portion of the Minkowski spacetime above a η = constant surface,
and there will be particle horizons. In fact, the integral converges for all spatially flat R-W solutions
of Einstein’s equation.

For the hyperboloid and spherical geometries, the behavior of a(τ) approaches that of the flat
case since the term involving k becomes negligible. In the case of spherical geometry, the spatial
extent of the universe is finite and depending on the nature of its components, the particle horizon
may cease to exist at some point.

The cosmic microwave background provides strong evidence for the homogeneity and isotropy of
the universe. In ordinary systems such as gas in a box, we can explain its homogeneity and isotropy
by stating that the particles have time to self-interact and thermalize. However, this reasoning does
not apply to a universe with particle horizons. To explain this, we may either postulate that the
universe either began in an extremely homogeneous, isotropic state, or had its inhomogeneity and
anisotropy damped out at some later time. Both theories have encountered difficulties, and a more
widely accepted explanation involves an inflation phase of the universe, which drastically expanded
the particle horizon to allow interactions between particles.

4.4 The Evolution of Our Universe

We will outline the history of the universe from the big bang to the present, assuming it is well-
described by a Robertson-Walker solution throughout its history. For more detailed descriptions
about the theory and observational evidence, see Peebles (1971) and Weinberg (1972).

As we have discussed earlier, the energy densities of radiation and matter scale differently with
the scale factor a, and we would expect the energy density contribution of radiation to dominate
in the early universe, when the scale factor was much smaller. In fact, at the matter-radiation
equality, a was more than 3000 times smaller (i.e. z ∼ 3000) than its present value. Thus, we
would expect a radiation filled model to be a good approximation for the dynamics of the universe
before this stage, and a matter/dust filled model to be a good approximation afterwards.

If the early universe was radiation dominated, we would expect that for all spatial geometries,
as a→ 0, the dependence of a and ρ on τ goes over to the flat solution:

a(τ) = (4C ′)1/4τ1/2, (4.4.1)

ρ =
3

32πGτ2
, (4.4.2)

where we have restored the constants c and G. If the radiation is thermally distributed, we can
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derive the mass density from statistical mechanics:

ρ =
n∑
i=1

αigi
π2

30~3c5
(kT )4, (4.4.3)

where n is the number of species of radiation, gi is the spin degeneracy, and αi is 1 for bosons and
7/8 for fermions. Note that particles with mass much less than kT act like massless particles and
are considered a “species of radiation.”

Next, we want to get an idea of the time scale at which the matter-radiation interactions occur.
This would help us determine whether thermalization occurs locally or not. The expansion time
scale tE of the universe is simply

tE ∼ a/ȧ = 2τ. (4.4.4)

On the other hand, the interaction time scale is

tI ∼
1

nσc
∝ a3

σ
∝ τ3/2/σ(T ), (4.4.5)

where the number of interacting particles is assumed to be conserved so that n ∝ a−3. The above
equations show that unless σ falls off rapidly at high energies, we will have tI � tE at very early
times of the universe, and thermalization can be achieved. Eventually, as the temperature drops, we
will have tI > tE , and the matter distribution will drop out of thermal equilibrium with radiation.

During the very beginning of the evolutionary history of the universe predicted by classical
general relativity, the spactime curvature was greater than the Planck length, so we should expect
quantum effects to play an important role. All statements about the behavior of matter during
this epoch are speculative.

It is worth pointing out two important effects that may have occurred shortly after the Planck
time. The first involves a phase transition of the thermal equilibrium state of the quantum field
of a unified theory of strong and electro-weak interactions. This may have caused the universe
to go through a phase in which the dynamics of the universe was dominated by a large, positive
cosmological constant, leading to an inflationary phase. The second effect concerns the production
of baryons. In the present universe there is a matter-antimatter asymmetry. It may be the case that
the universe was simply born with with an excess amount of baryons over antibaryons. However,
it is also possible that more baryons were produced in the very early universe. For the second
statement to be true, the high energy particle interactions mus satisfy the following properties:
(1) they do not conserve baryon number; (2) they do not preserve charge conjugation C and the
composition of C with parity, CP ; (3) they must result in departures from thermal equilibrium.

At τ = 1 second, the density of the universe was ρ ≈ 5 × 105 g/cm3 and the temperature
was T ≈ 1010 K. These are low enough for us to make solid predictions. The matter of the
universe consisted almost entirely of photons, neutrinos, electrons, positrons, neutrons, and protons
in thermal equilibrium. At this stage, the interactions of neutrinos become weak and they decouple
from the rest of the matter. We therefore expect to see a cosmic neutrino background at temperature
T ≈ 2 K.

As the universe continues to cool, the rates of reactions between neutrons and protons drop
quickly to below the expansion rate, leading to a “freeze-out” of the neutron-proton ratio at 1/6
at τ ∼ 1.5 seconds. Then, at τ = 4 seconds, the temperature dropped to approximately the mass of
electrons and positrons (0.5 MeV). At this stage the production rate drops below the annihilation
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rate, and all positrons are annihilated, heating the photons to a temperature about 1.4 times that
of the neutrinos.

Nucleosythesis producing 4He began when the temperature drops to about 109 K at τ ≈ 3
minutes. Very little nucleosynthesis occurbefore this time before because deuterium, an important
ingredient, was not abundant until this time. The large Coulomb barrier and lack of stable isotopes
limit the production of heavier nuclei. The percentage of 4He is not very sensitive to the baryon
density, and depends mainly on the neutron-proton ratio at “freeze-out.” The abundances of other
elements are more sensitive to baryon density. This process (big bang nucleosythesis) accounts
for most of the 25% of helium in the universe.

The next major event, called recombination, occurred at τ ∼ 4 × 105 years, when the tem-
perature was about 4000 K. At this point the free electrons and protons combined to form neutral
hydrogen. The interaction between matter and radiation drops as the scattering cross-section for
neutral atoms is much smaller than that of charged particles, and the photons decouples from
the matter. This is the origin of the cosmic microwave background, a blackbody radiation at
temperature T ≈ 2.7 K filling the universe. Its isotropy at the large scales is strong evidence for
the homogeneity and isotropy of the universe at the time of recombination.

As the matter and radiation decouple, gravitational perturbations, no longer inhibited by ra-
diation pressure, started to grow and led to the formation of galaxies. The density fluctuations in
the matter distribution that acted as seeds of galaxies are being actively studied. Around the same
time (103 . τ . 107 years), matter became the dominant form of energy in the universe. More
recently (in the cosmological sense), another form of energy with an equation of state parameter
w ≈ −1 (i.e. the cosmological constant) starts to dominate, and is responsible for the accelerating
expansion of the universe.

If one accepts the picture of the universe predicted by general relativity, we will arrive at some
constraints on (1) the masses of stable, weakly interacting, elementary particles, and (2) the number
of species of massless particles that are in thermal equilibrium in the early universe. As for the
first constraint, suppose some massive stable particle (electron, neutrino, etc.) has mass m. The
behavior of this particle in the early universe would be the same as that of a massless neutrino.
However, in the present universe, it contributes energy m per particle instead of ∼ 10−4 eV per
particle (or T ∼ 2 K). If the particles are very massive, their population would have been set at a
low value when they dropped out of thermal equilibrium and they would not contribute much to
the energy density of the present universe. They would be the dominant contributors to the energy
density, however, if their mass lies within 100 eV . m . 100 GeV.

Because the energy of “massless” particles would get redshifted away as the universe expands,
the existence of other species of such particles in thermal equilibrium in the early universe would
not contribute much to the present energy density of the universe. However, according to Eq.
4.4.3, they would affect the relation between ρ and T in the early universe and make T smaller
for a given ρ. This means a given temperature will occur at an earlier time when the expansion
rate is higher. As a result, “freeze-out” occurs at a higher temperature and a higher percentage
of neutrons is produced, leading to more helium from the nucleosynthesis. Assuming the baryon
density corresponds to the observed value today, it is found that much more helium would be
produced if there are more than four species of neutrinos.

The future of the universe depends on its components as well as its geometry. There are many
ways to determine whether the universe is open or closed, including the redshift-apparent magnitude
relation for distant objects, the present mass density of the universe, the age of the universe, the
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cosmic abundance of deuterium, etc. The current observation results indicate that the universe is
close to being flat, with a tight upper bound placed on the value of Ωk.

5 The Schwarzschild Solution

In addition to cosmological observations, we can also test general relativity by measuring the grav-
itational fields around the sun. Thus, we wish to determine a solution of Einstein’s equation
corresponding to the exterior of a static, spherically symmetric body, which is a good approxima-
tion of the sun and many other bodies. This problem was solved by Karl Schwarzschild in 1916, a
few months after the publication of Einstein’s vacuum field equations.

As we have mentioned in section 3.4.1, predictions of general relativity reduce to those of
Newtonian theory in the slow motion, weak field limit. The Schwarzschild solution, however,
accurately predicts the deviations of planetary motion from the Newtonian theory, and as well
as gravitational lensing, gravitational redshift, and time delay effects. In addition, the vacuum
Schwarzschild solution can describe the entire spacetime geometry around the end product of
gravitational collapse, and it contains a spacetime singularity hidden inside a black hole.

5.1 Derivation of the Schwarzschild Solution

We wish to find all four-dimensional Lorentz signature metrics whose Ricci tensor vanishes (because
it is associated with a flow of the metric with respect to time)12 and which are static and possess
spherical symmetry. The first task is to give precise definitions to the terms “static” and “spherically
symmetric, and to choose a convenient coordinate system.

A spacetime is said to be stationary is there exists a one-parameter group of isometries φt
whose orbits are timelike curves. This group expresses time translation symmetry of the spacetime.
Equivalently, a stationary spacetime possesses a timelike Killing vector field ξa. A spacetime is said
to be static if it is stationary and if there exists a spacelike hypersurface Σ which is orthogonal to
the orbits of the isometry. By Frobenius’s theorem this is equivalent to

ξ[a∇bξc] = 0. (5.1.1)

We can interpret this extra condition by introducing a convenient coordinates for static spacetimes
as follows. If ξa 6= 0 everywhere on Σ, then in a neighborhood of Σ, every point will lie on a unique
orbit of ξa which passes through Σ. Assuming ξa 6= 0, we choose arbitrary coordinates {xµ} on Σ
and label each point in this neighborhood by the parameter t of the orbit which starts from Σ and
ends at p, and the coordinates x1, x2, x3 of the orbit at Σ. Since this coordinate system employs
the Killing parameter t as one of the coordinates, the metric components in this coordinate basis
will be independent of t. Also since the surface Σt (the set of points with “time coordinate” t) is
the image of Σ under teh isometry φt, it follows that each Σt is also orthogonal to ξa. In these
coordinates, the metric components take the form

ds2 = −V 2(x1, x2, x3)dt2 +
3∑

µ,ν=1

hµν(x1, x2, x3)dxµdxν , (5.1.2)

12We can also contract the vacuum Einstein equation Rµν − 1
2
gµνR = 0 to get R− 1

2
δµµR = 0. In four dimensions,

δµµ = 4, so we obtain −2R = 0 and hence Rµν = 0.
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where V 2 = −ξaξa, and the absence of dtdxµ cross terms expresses the orthogonality of ξa with Σ.
These cross terms are present for a stationary but nonstatic metric.

From Eq. 5.1.2, we can see the diffeomorphism defined by t → −t which takes a point on
each Σt to a point with the same spatial coordinate on Σ−t is an isometry. Thus static spacetimes
possess a “time reflection” symmetry in addition to the “time translation” symmetry possessed
by stationary spacetimes. Field that are time translation invariant can fail to be time reflection
invariant when rotational motion, whose direction would be changed by time reflection, is involved.
The failure of Eq. 5.1.1 to hold implies that the neighboring orbits of ξa “twist” around each other.

A spacetime is said to be spherically symmetric if its isometry group contains a subgroup
isomorphic to SO(3), and the orbits of this subgroup are two-dimensional spheres. We may interpret
the SO(3) isometries as rotations, and a spherically symmetric spacetime has its metric invariant
under rotations. The spacetime metric induces a metric on each orbit 2-sphere which must be a
multiple of the metric of a unit 2-sphere due to rotational symmetry. Thus, this induced metric
can be completely characterized by the total area A of the 2-sphere, and we introduce a function
r defined by r = (A/4π)1/2. Therefore, in spherical coordinates, the metric on each orbit 2-sphere
is the familiar

ds2 = r2(dθ2 + sin2 θdφ2). (5.1.3)

We interpret r as the radius of the sphere in flat, three-dimensional Euclidean space.
If a spacetime is both static ans spherically symmetric, and if the static Killing field ξa is

unique, then ξa must be orthogonal to the orbit 2-spheres, because its rotational invariance requires
its projection onto any orbit sphere to be zero. Thus, the orbit spheres lie wholly within the
hypersurfaces Σt. We choose the coordinates as follows. We select a sphere on Σ = Σ0 and choose
spherical coordinates (θ, φ) on it, and “carry” these coordinates to other spheres of Σ by means of
geodesics orthogonal to the 2-sphere. Provided that ∇ar 6= 0, we choose (r, θ, φ) as coordinates in
Σt and (t, r, θ, φ) as coordinates for the spacetime according to Eq. 5.1.2. The most general form
of such as metric has the form

ds2 = −f(r)dt2 + h(r)dr2 + r2(dθ2 + sin2 θdφ2). (5.1.4)

It is worth pointing out that, in addition to the breakdown of the spherical coordinates at the north
and south poles, this coordinate system breaks down at points where ξa = 0 or ∇ar = 0. This
occurs in the strong field region of the Schwarzschild solution.

With the form of the metric determined, we have reduced the problem from solving for 10
functions corresponding to the 10 metric components gµν of 4 variables down to solving for two
functions of one variable. We will compute the Ricci tensor of the the metric in Eq. 5.1.4 and
solve Rab = 0 for f and h. This can be done with the tetrad method introduced in section 2.4.2.
A convenient basis is

(e0)a = f1/2(dt)a, (5.1.5)

(e1)a = h1/2(dr)a, (5.1.6)

(e2)a = r(dθ)a, (5.1.7)

(e3)a = r sin θ(dφ)a. (5.1.8)

Detailed calculations of the Riemann tensor using the tetrad method can be found on pages 121-123
of Wald. By setting the Ricci tensor to zero, we will arrive at the vacuum Einstein equation for
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static, spherically symmetric spacetime:

0 = R00 =
1

2
(fh)−1/2 d

dr
[(fh)−1/2f ′] + (rfh)−1f ′, (5.1.9)

0 = R11 = −1

2
(fh)−1/2 d

dr
[(fh)−1/2f ′] + (rh2)−1h′, (5.1.10)

0 = R22 = R33 = −1

2
(rfh)−1f ′ +

1

2
(rh2)−1h′ + r−2(1− h−1), (5.1.11)

where Rµν ≡ Rab(eµ)a(eν)b. The off-diagonal components of Rµν vanish due to symmetry. Adding
Eq. 5.1.9 and 5.1.10, we obtain

f ′

f
+
h′

h
= 0, (5.1.12)

which implies f = K/h, where K is a constant. We may set K to 1 by rescaling the time coordinate
t→ K1/2t, and Eq. 5.1.11 yields

− f ′ + 1− f
r

= 0, i.e.,
d

dr
(rf) = 1. (5.1.13)

This implies f = 1 + C/r, where C is a constant. Combining these results we obtain the
Schwarzschild solution

ds2 = −
(

1 +
C

r

)
dt2 +

(
1 +

C

r

)−1

dr2 + r2dΩ2, (5.1.14)

where dΩ2 ≡ dθ2 + sin2 θdφ2. We should notice that this solution is asymptotically flat, i.e. its
metric components approach those of Minkowski spacetime as r →∞. This means we can interpret
the Schwarzschild metric as the exterior gravitational field of an isolated body. By comparing the
behavior of a test body in the weak field regime (r →∞) with the parameter C with the behavior
of a test body of M in Newtonian theory, we can show that M = −C/2. Thus, we can interpret
−C/2 as the total mass of the Schwarzschild field, and we can rewrite the Schwarzschild metric
as

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2. (5.1.15)

We should note that the metric components of the Schwarzschild solution become singular in
the strong field regime at R = 0 and R = 2M . This behavior can be attributed to either (i) a
breakdown of the coordinates used to obtain the general form of the metric (Eq. 5.1.4) because
ξa = 0 or ∇ar = 0, or (ii) a true singularity of the spacetime structure. We will see later that
the singularity at r = 2M is due to (i), while r = 0 is a true, physical singularity. Note that the
“singularity” at r = 2M occurs at a numerical value given by

rS =
2GM

c2
≈ 3

(
M

M�

)
km. (5.1.16)

Thus, the Schwarzschild radius rS for an ordinary body such as the sun is well inside the radius of
the body, where the vacuum solution is no longer valid. The two singularities are relevant only for
bodies that have undergone complete gravitational collapse.

The vacuum Einstein equation can also be solved for a general spherically symmetric spacetime,
but it has been shown by Birkhoff (1923) that the Schwarzschild solution is the only solution to this
more general system of equations. This result is analogous to the fact that the Coulomb solution is
the only spherically symmetric solution of Maxwell’s equations in vacuum, which we can interpret
as there exists no monopole radiation.
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5.2 Interior Solutions

We now look for a static, spherically symmetric solution of Einstein’s equation with a perfect fluid
stress-energy tensor Tab = ρuaub+P (gab+uaub). For the static symmetry of the spacetime to hold,
the 4-velocity of the fluid must point in the same direction as the static Killing vector field, i.e.

ua = −(e0)a = −f1/2(dt)a, (5.2.1)

where f is the function appearing in Eq. 5.1.4. We want to find solutions that describe the possible
interior fluid sources of the exterior Schwarzschild metric, so we will be looking for equations of
structure for static, fluid objects such as stars.

We can simply add the stress-energy terms to equations 5.1.9 - 5.1.11 to obtain Einstein’s
equation with a fluid:

8πT00 = 8πρ = G00 = R00 +
1

2
(R 0

0 +R 1
1 +R 2

2 +R 3
3 )

= (rh2)−1h′ + r−2(1− h−1), (5.2.2)

8πT11 = 8πP = G11 = R11 −
1

2
(R 0

0 +R 1
1 +R 2

2 +R 3
3 )

= (rfh)−1f ′ − r−2(1− h−1), (5.2.3)

8πT22 = 8πP = G22 =
1

2
(fh)−1/2 d

dr
[(fh)−1/2f ′] +

1

2
(rfh)−1f ′ − 1

2
(rh2)−1h′. (5.2.4)

Note that the first equation involves only h and can be written in the form

1

r2

d

dr
[r(1− h−1)] = 8πρ, (5.2.5)

and the solution for h is

h(r) =

[
1− 2m(r)

r

]−1

, where m(r) = 4π

∫ r

0
ρ(r′)r′2dr′ + a, (5.2.6)

where a is a constant. For the metric on Σ to be smooth at r = 0, we require that h(r) → 1 as
r → 0. Thus, in order to avoid a “conical singularity” in the metric at r = 0, we set a = 0. Since
Σ must be spacelike for a static configuration, the necessary condition for staticity is h ≥ 0, i.e.
r ≥ 2m(r).

If ρ = 0 for r > R, the solution for h (Eq. 5.2.6) joins the vacuum Schwarzschild solution with
total mass M = m(R). This is formally identical to the expression for total mass in Newtonian grav-

ity. However, we must note that the proper volume element on Σ is
√

(3)gd3x = h1/2r2 sin θdrdθdφ,
so the proper mass is

Mp = 4π

∫ R

0
ρ(r)r2

[
1− 2m(r)

r

]−1/2

dr. (5.2.7)

We can interpret the difference between M and Mp as the gravitational binding energy of the
configuration: EB = Mp −M , which is always positive since Mp > M .

If we write f = e2φ, then Eq. 5.2.3 becomes

dφ

dr
=
m(r) + 4πr3P

r[r − 2m(r)]
. (5.2.8)
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In the Newtonian limit, r3P � m(r) and m(r) � r, so this reduces to the spherically symmetric

Poisson’s equation for the Newtonian gravitational potential: dφ
dr ≈

m(r)
r2

. Thus, in the static
spherically symmetric case, φ = 1

2 ln f is the general relativistic analog of the Newtonian potential.
However, there is no known analog for nonstationary configurations.

Substituting Eq. 5.2.6 and 5.2.8 into Eq. 5.2.4, we will obtain an equation for dP/dr. I will
skip the algebra here. The result is

dP

dr
= −(P + ρ)

m(r) + 4πr3P

r[r − 2m(r)]
. (5.2.9)

This is known as the Tolman-Oppenheimer-Volkoff equation of hydrostatic equilibrium. In
the Newtonian limit (P � ρ,m(r)� r), it reduces to dP

dr ≈ −
ρm(r)
r2

.
In summary, the interior metric of a static, spherical fluid star is

ds2 = −e2φdt2 +

(
1− 2m(r)

r

)−1

dr2 + r2dΩ2, (5.2.10)

wher m(r) is defined the same way as before and φ is determined from Eq. 5.2.8.
Thus, we can determine the equilibrium condition for fluid matter with a given equation of

state P = P (ρ) mostly in the same way as in Newtonian gravity: We choose a central density ρc
and hence a central pressure Pc, and integrate Eq. 5.2.9 outward to P = ρ = 0, at which point we
join this with the vacuum Schwarzschild solution and solve for φ using 5.2.8.

The most important difference between equilibrium configurations in GR and Newtonian gravity
is that, assuming non-negative pressure, for a given density profile ρ(r) ≥ 0 the right hand side
of Eq. 5.2.9 is always larger in magnitude than the right hand side of the Newtonian equation.
This means for a given density profile, the central pressure required for equilibrium is always higher
in GR than in Newtonian gravity, so it is harder to maintain equilibrium in GR. Consider a star
of uniform density ρ0 and radius R. In both theories, m(r) = 4

3πr
3ρ0. In the Newtonian case,

P (r) = 2
3πρ

2
0(R2 − r2), so the central pressure is Pc = 2

3πρ
2
0R

2 =
(
π
6

)1/3
M2/3ρ

4/3
0 , which is finite

for all values of ρ0 and R. This means equilibrium can always be achieved. On the other hand, the
pressure profile in general relativity is found to be

P (r) = ρ0

[
(1− 2M/R)1/2 − (1− 2Mr2/R2)1/2

(1− 2Mr2/R3)1/2 − 3(1− 2M/R)1/2

]
, (5.2.11)

and the central pressure is

P (r) = ρ0

[
1− (1− 2M/R)1/2

3(1− 2M/R)1/2 − 1

]
. (5.2.12)

This reduces to the Newtonian value for R�M . However, Pc could become infinite when R = 9
4M ,

so the maximum possible mass for a star of uniform density in GR is

Mmax =
4

9(3πρ0)1/2
. (5.2.13)

This result does not only hold for the uniform density case, and we will derive the upper mass limit
for static, spherical stars with a fixed radius R.
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First we should point out that the staticity condition for h already implies an upper mass limit
M ≤ R/2, but this can be sharpened using the condition f ≥ 0 which states that the Killing field
ξa is timelike everywhere. Assuming only that ρ ≥ 0 and dρ/dr ≤ 0, we can take the difference of
Eq. 5.2.3 and 5.2.4 to obtain

0 = G11 −G22 =
1

2
(rfh)−1f ′ − r−2(1− h−1) +

1

2
(rh2)−1h′ − 1

2
(fh)−1/2 d

dr
[(fh)−1/2f ′]. (5.2.14)

Substituting the solution for h in the second and third terms, and use the fact that the average
density (∝ m(r)/r3) decreases monotonically with r, we have

d

dr

[
r−1h−1/2df

1/2

dr

]
≤ 0. (5.2.15)

Integrate this inequality inward from R to r, then multiply it by rh1/2 and integrate inward again
from R to 0 to get

f1/2(0) ≤ (1− 2M/R)1/2 − M

R3

∫ R

0

[
1− 2m(r)

r

]−1/2

rdr. (5.2.16)

The condition dρ/dr ≤ 0 implies that m(r) cannot be smaller than the value it would have for a
uniform density star, so m(r) ≥Mr3/R3. Thus, we obatain

f1/2(0) ≤ 3

2
(1− 2M/R)1/2 − 1

2
. (5.2.17)

The condition f1/2(0) ≥ 0 then implies

M ≤ 4R/9. (5.2.18)

In addition to the upper mass limit at a fixed radius, we can also find an upper mass limit for a
given equation of state below density ρ0. Since dρ/dr ≤ 0, stars whose density fails to be less than
ρ0 must have a “core” of mass m0 and radius r0 where ρ ≥ ρ0, surrounded by an “envelope” where
ρ < ρ0. Given the equation of state for ρ < ρ0, the total mass M is determined by the parameters
m0 and r0. Since the the core density is at least ρ0, the lower mass limit for the core is

m0 ≥
4

3
πr3

0ρ0. (5.2.19)

Using the same argument as before, we can find an upper mass limit for the core:

m0 ≤
2

9
r0[1− 6πr2

0P0 + (1 + 6πr2
0P0)1/2], (5.2.20)

where P0 = P (ρ0) is the pressure at the core-envelope boundary. Eq. 5.2.19 and 5.2.20 restrict m0

and r0 to the compact region of the m0-r0 plane, so M(m0, r0) is a continuous function defined on
a compact set and therefore M is bounded. This upper mass limit for a given equation of state also
exists in Newtonian gravity. The difference is that in GR, at sufficiently high densities, the limit is
independent of of the equation of state.

For cold matter at densities much less than the nuclear density (∼ 1014 g cm−3), electron
degeneracy pressure is the dominant source of pressure (the similar neutron degeneracy pressure
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would dominate near the nuclear density). At “low” densities (n � m3
ec

3/~3 ∼ 10−31 cm−3) and
temperature T = 0, it provides a pressure of

P =
~2(3π2)2/3

5me
n5/3. (5.2.21)

At high densities (n� m3
ec

3/~3) the pressure is

P =
~c(3π2)1/3

4
n4/3. (5.2.22)

Cold bodies that comprise stable equilibrium configurations supported by electron degeneracy pres-
sure are know as white dwarfs, whose maximum mass is given by (Chandrasekhar 1939)

MC ≈ 1.4

(
2

µN

)2

M�, (5.2.23)

where µN is the number of nucleons per electron. In Newtonian theory with a fixed µN , the mass
monotonically approaches the value given by Eq. 5.2.23 with ρc →∞ and R→ 0. In GR, however,
the mass begins to decrease with ρc at some finite value of ρc, although MC is not significantly
changed. At this point, the configuration becomes unstable again, and µN increases as protons
and electrons are converted into neutrons at high density. This leads to neutron stars, which
are supported by neutron degeneracy pressure in a similar way. The precise upper mass limit for
neutrons stars is uncertain.

5.3 Geodesics of Schwarzschild: Gravitational Redshift, Perihelion Precession,
Bending of Light, and Time Delay of Radar Signals

In previous sections we have discussed the vacuum Schwarzschild solution and the interior of a
static, spherically symmetric star. In this section, we will analyze the behavior of test bodies and
light rays in the exterior (r > 2M) of the Schwarzschild solution. The geodesics in the weak field
regime (r �M) are applicable to non-compact objects such as the sun.

We may use the invariance of the inner product uaξa of a Killing field ξa and a geodesic tangent
ua along the geodesic to spare us the labor to solve the geodesic equation (Eq. 2.3.3). First of all,
this allows us to derive a formula for the gravitational redshift. This derivation is similar to that
of the cosmological redshift derived in section 4.3.1.

Consider two static observers (observers whose 4-velocity is tangent to the static Killing field
ξa = (∂/∂t)a) O1 and O2 with 4-velocities ua1 and ua2. Suppose O1 emits a signal at event P1 which
is received by O2 at event O2. In the geometrical optics approximation this signal travels on a
null geodesic with tangent ka. The frequency of emission is ω1 = −(kau

a
1)|P1 and the measured

frequency is ω2 = −(kau
a
2)|P2 . However, since both 4-velocities are unit vectors pointing in the

direction of the timelike ξa, we have

ua1 = [ξa/(−ξbξb)1/2]|P1 , (5.3.1)

ua2 = [ξa/(−ξbξb)1/2]|P2 . (5.3.2)

By the invariance of the inner product, we have (kaξ
a)|P1 = (kaξ

a)|P2 , so

ω1

ω2
=

(−ξbξb)1/2|P2

(−ξbξb)1/2|P1

=
(1− 2M/r2)1/2

(1− 2M/r1)1/2
, (5.3.3)
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where we used ξbξb = gtt = −(1 − 2M/r) for Schwarzschild spacetime. Eq. 5.3.3 shows that for
r2 > r1 (emitter closer to the center of gravitational attraction), ω2 < ω1. This makes sense because
the photon would lose energy as it climbs out of the gravitational well. In the case of the exterior
region of ordinary bodies (M � r1, r2), Eq. 5.3.3 becomes

∆ω

ω
≈ −GM

c2r1
+
GM

c2r2
. (5.3.4)

We may interpret this as the change in the locally measured energy of a photon is equal to the
change in its Newtonian gravitational energy.

We have shown in section 5.2 that the maximum value of M/R is 4/9. Thus, by Eq. 5.3.3 the
maximum redshift of light emitted from the surface of a static star is

ω1

ω2

∣∣
max

=
ω(r = 9M/4)

ω(r =∞)
= 3; or zmax =

ω1

ω2

∣∣
max
− 1 = 2. (5.3.5)

This means observed redshifts of greater than 2 cannot solely be attributed to this gravitational
redshift.

To solve the timelike and null geodesics, we first note that because of the parity reflection
symmetry θ → π − θ or the Schwarzschild metric, if the initial position and tangent vector of a
geodesic lie in the equatorial plane θ = π/2, then the entire geodesic should lie in this plane. Since
every geodesic can be brought to an initially equatorial geodesic by a rotational isometry, we may
restrict our discussion to the equatorial geodesics without loss of generality.

The coordinate basis components of the tangent ua to a curve parameterized by τ are uµ =
dxµ

dτ ≡ ẋµ. For timelike geodesics, we choose τ to be the proper time; for null geodesics, τ is an
affine parameter. Thus, we have

− κ = gabu
aub = −(1− 2M/r)ṫ2 + (1− 2M/r)−1ṙ2 + r2φ̇2, (5.3.6)

where

κ =

{
1 (timelike geodesics)

0 (null geodesics).
(5.3.7)

In the derivation of the gravitational redshift, we used the fact that the quantity

E = −gabξaub = (1− 2M/r)ṫ (5.3.8)

is a constant of motion. We may interpret E for timelike geodesics as representing the total energy
per unit rest mass of a particle following the geodesic in question, relative to a static observer at
infinity. This is the energy that would be required for such an observer to put a unit rest mass
particle in the given orbit. Similarly, in the null case, ~E represents the total energy of a photon.

The rotational Killing field ψa = (∂/∂φ)a also yields a constant of motion:

L = gabψ
aub = r2φ̇. (5.3.9)

We may interpret L as the angular momentum per unit rest mass of a particle in the timelike case,
and ~L as the angular momentum of a photon in the null case. In the Newtonian limit where the
geometry is Euclidean, Eq. 5.3.9 is just Kepler’s second law.
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Substituting Eq. 5.3.8 and 5.3.9 in Eq. 5.3.6, we obtain the final equation for geodesics

1

2
ṙ2 +

1

2

(
1− 2M

r

)(
L2

r2
+ κ

)
=

1

2
E2. (5.3.10)

This shows that the radial motion of a geodesic is the same as that of a unit mass particle of energy
E2/2 in ordinary 1-dimensional, nonrelativistic mechanics moving in the effective potential

V =
1

2
κ− κM

r
+
L2

2r2
− ML2

r3
. (5.3.11)

Eq. 5.3.8, 5.3.9, and 5.3.11 determine the time coordinate change, angular motion, and radial
motion of the particle. It is worth noting that in addition to the Newtonian term −κM/r and the
centrifugal term L2/2r2, we now have a new term −ML2/r3 which dominates over the centrifugal
term at small r.

Let us first consider timelike geodesics (κ = 1). We will find that extremizing V yields the roots

R± =
L2 ±

√
L4 − 12L2M2

2M
. (5.3.12)

If L2 < 12M2, there are no extrema of V . Such a particle heading toward the center of attraction
(ṙ ≤ 0) will fall directly to the r = 2M surface and continue to fall into the spacetime singularity
at r = 0.

For L2 > 12M2, R+ is a minimum and R− is a maximum. Thus, stable circular orbits (ṙ = 0)
exist at r = R+ and unstable circular orbits exist at r = R−. For L � M , we have R+ ≈ L2/M ,
which is just the Newtonian formula for the radius of a circular orbit. This justifies our earlier
interpretation of the constant C as −2M in Eq. 5.1.15. According to Eq. 5.3.12, R+ is restricted
to the range R+ > 6M (no stable circular orbits exist inside 6M) and R− is restricted to 3M <
R− < 6M (no circular orbits exist inside 3M).

The energy of an ordinary particle in 1-dimensional motion which sits at the minimum/maximum
of V is just the value of V at that point. Thus, from Eq. 5.3.10, the true energy per unit rest mass
E of a particle in a circular orbit of radius R is

E(R) =
R− 2M

R1/2(R− 3M)1/2
. (5.3.13)

Note that if R ≤ 4M , we have E ≥ 1 and E → ∞ as R → 3M . Thus, particles in the unstable
orbits between 3M and 4M would escape to infinity if perturbed radially outward.

The binding energy EB per unit rest mass of the last stable circular orbit at R = 6M is
EB = 1 − E = 1 − (8/9)1/2 ≈ 0.06. As discussed in section 3.4.2, a particle orbiting in the
Schwarzschild geometry will emit gravitational radiation. Because of radiation reaction, it will
deviate slightly from geodesic motion. A particle initially in a circular orbit with R�M (E ≈ 1)
should slowly spiral in to smaller radii as it loses energy through radiation, remaining in a nearly
circular orbit until it reaches R = 6M , after which the orbit becomes unstable and the particle falls
rapidly to r = 0. According to the calculation of EB above, about 6% of the original mass-energy
of the particle will be radiated away as it spirals to R = 6M .

For sufficiently small displacements from the equilibirum radius R+, a particle will oscillate in
simple harmonic motion about R+ with frequency ωr

ω2
r = keff =

d2V

dr2

∣∣
R+

=
M(R+ − 6M)

R3
+(R+ − 3M)

. (5.3.14)
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Note that the time implicit in ωr is the proper time τ measured by the particle. On the other hand,
the angular frequency ωφ = φ̇ of a circular orbit is given by

ω2
φ =

L2

R4
+

=
M

R2
+(R+ − 3M)

. (5.3.15)

In the Newtonian limit (R+ � M), ωr ≈ ωφ. If the two frequencies are the same, we will have
closed orbits. The fact that the two do not match in general relativity means that the orbit is not
closed and there is a precession of the angle at which the maximum and minimum values of r are
achieved. For nearly circular orbits, this precession rate is given by

ωp = ωφ − ωr = −[(1− 6M/R+)1/2 − 1]ωφ. (5.3.16)

In the Newtonian limit and to the lowest nonvanishing order, this reduces to

ωp ≈
3M3/2

R
5/2
+

=
3(GM)3/2

c2R
5/2
+

. (5.3.17)

A more general analysis (Weinberg 1972) gives the precession rate of an arbitrary elliptical orbit

ωp ≈
3(GM)3/2

c2(1− e2)a5/2
, (5.3.18)

where a is the semimajor axis and e is the eccentricity.
Now let us consider the case of null geodesics (κ = 0). According to Eq. 5.3.10, the effective

potential for null geodesics is

V =
L2

2r3
(r − 2M). (5.3.19)

The shape of V is independent of L and it has only one maximum at r = 3M . Thus, photons have
unstable circular orbits at r = 3M , but no stable circular orbits. The minimum energy E required
to overcome the potential barrier is given by

1

2
E2 = V (R = 3M) =

L2M

2(3M)3
, or

L2

E2
= 27M2. (5.3.20)

For a light ray propagating in flat spacetime, the impact parameter (distance of closest approach
to r = 0) is L/E. Since the Schwarzschild geometry is asymptotically flat, for a light ray initially
in the r �M region, we can define the apparent impact parameter

b =≡ L

E
, (5.3.21)

although this no longer represents the distance of closest approach. Thus, in the Schwarzschild
geometry, any photon with an apparent impact parameter smaller than the critical value bc = 33/2M
will be captured. Hence the cross section for photons in the Schwarzschild geometry is

σ = πb2c = 27πM2. (5.3.22)
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To find the angle ∆φ = φ+∞ − φ−∞ for photons that are not captured, we can use Eq. 5.3.9
and 5.3.10 to derive an expression for the light bending effects of the Schwarzschild geometry:

dφ

dr
=
L

r2

[
E2 − L2

r3
(r − 2M)

]−1/2

. (5.3.23)

In order to not be captured, the impact parameter must be greater than the critical value bc, and
the orbit of the light must have a turning point at the largest radius R0 for which V (R0) = E2/2,
i.e. at the largest root of

R3
0 − b2(R0 − 2M) = 0, (5.3.24)

which gives

R0 =
2b√

3
cos

[
1

3
arccos

(
−33/2M

b

)]
. (5.3.25)

By symmetry, the contributions to ∆φ before and after the turning point should be equal, and we
have

∆φ = 2

∫ ∞
R0

dr

[r4b−2 − r(r − 2M)]1/2
. (5.3.26)

With a change of variables u = 1/r, we can find that in the case of flat spacetime (M = 0, R0 = b),
we have ∆φ|M=0 = 2 arcsin (b/R0) = π, i.e. a straight line. For the case of curved spacetime, if
we want to find ∆φ to first order in M , we may use M and R0 as independent variables, i.e. we
compare Deltaφ for lights rays which have the same radial coordinate R0 at the closest approach
rather than with the same apparent impact parameter. Thus we obtain

∆φ = 2

∫ 1/R0

0

du

(R−2
0 − 2MR−3

0 − u2 + 2Mu3)1/2
. (5.3.27)

Differentiating this with respect to M at a fixed R0 and evaluating the result at M = 0, we find,
to first order in M , the deflection angle is

δφ = ∆φ− π ≈M∂(∆φ)

∂M

∣∣
M=0

=
4GM

bc2
. (5.3.28)

Another measurable effect concerning the null geodesics is the time delay of radar signals emitted
from Earth. From Eq. 5.3.8 and 5.3.10 we can obtain

dt

dr
=

(
1− 2M

r

)−1 [
1−

(
1− 2M

r

)
b2

r2

]−1/2

. (5.3.29)

We can integrate this equation over the trajectory of a null geodesic to obtain the total change ∆t
in the Schwarzschild time coordinate along the trajectory. Consider a radar signal emitted from
Earth, located at RE . The signal passes near the sun with radius of closest approach R0 and is
reflected off a planet located at Rp and retraces its trajectory back to Earth. We wish to find,
to first order in M , the time ∆τ experienced by an observer on Earth between the emission and
reception of the signal. Similar to the light bending analysis, we will obtain

∆t =
2

c
[(R2

E −R2
0)1/2 + (R2

p −R2
0)1/2] +

2GM

c3

{
2 ln

[
RE + (R2

E −R2
0)1/2

R0

]

+ 2 ln

[
Rp + (R2

p −R2
0)1/2

R0

]
+

(
RE −R0

RE +R0

)1/2

+

(
Rp −R0

Rp +R0

)1/2
}
. (5.3.30)
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The proper time elapsed on Earth is given by ∆τ = (1− 2M/RE)1/2∆t. Thus, to first order in M ,
we have

∆τ = −2GM

c3RE
[(R2

E −R2
0)1/2 + (R2

p +R2
0)1/2] + ∆t. (5.3.31)

5.4 The Kruskal Extension

As we have discussed in section 5.2, analysis of the singularities at r = 2M and r = 0 for the
vacuum Schwarzschild solution is irrelevant to the study of the gravitational field of a static star
as they are well within the matter-filled interior. However, this becomes important when we seek
to describe the endpoint of gravitational collapse.

Whenever the metric components in a coordinate basis are badly behaved for certain values of
the coordinates, there are two possible causes: (1) the spacetime is singular; or (2) the spacetime is
not singular but the coordinates fail to properly cover a region of spacetime. Normally, possibility
(1) can be demonstrated by calculating a curvature scalar such as RabcdR

abcd and showing that
it blows up at the singularity, although exceptions exist. This singularity also lies at a finite
affine parameter along some geodesic, because a “singularity” at infinity is not really a singularity.
We can demonstrate possibility (2) by displaying an extension to the nonsingular region of the
original metric, i.e. a spacetime that includes the original spacetime as a proper subset, through
a coordinate transformation. For the Schwarzschild metric, the coordinates are not well-behaved
where the timelike Killing field ξa becomes collinear with ∇ar. This occurs at r = 0 and r = 2M .

Let us look at two examples. Consider the two dimensional metric

ds2 = − 1

t4
dt2 + dx2 (5.4.1)

defined over the range −∞ < x < ∞, 0 < t < ∞. This metric appears to have a singularity at
t = 0. However, if we make a coordinate transformation t → t′ = 1/t, we can obtain the flat
metric ds2 = −(dt′)2 + dx2. The original spacetime is then just the t′ > 0 portion of Minkowski
spacetime, and t = 0 of the original metric just represents t′ → ∞ in Minkowski spacetime. It is
the result of a covering of an infinite region of spacetime with a finite range of a coordinate. The
spacetime geometry is geodesically complete as t → 0(t′ → ∞), i.e. all the geodesics approaching
t = 0 extend to arbitrarily large values of their affine parameter (extendible). On the other hand,
the original metric is not geodesically complete as t → ∞(t′ → 0), but we can extend the original
metric “beyond t = 0” by adding the portion t′ ≤ 0 of Minkowski spacetime. We can see from this
example that coordinate labels may not be physically meaningful quantities.

For the second example, let us consider the Rindler spacetime,

ds2 = −x2dt2 + dx2 (5.4.2)

with ranges −∞ < t < ∞, 0 < x < ∞. This metric appears to have a singularity at x = 0.
Geodesics terminate at x = 0 with finite length, but the curvature scalars are well behaved as
x → 0, suggesting a coordinate singularity. It is not easy to guess a coordinate transformation
for this metric, so instead we start by introducing new coordinates which are linked closely with
to the spacetime geometry. For example, we can choose a family of geodesics that head toward
the singularity and use the affine parameter along the geodesics as one of the coordinates. This
method, however, does not work at all times, and new coordinate singularities may appear whenever
the geodesics cross. Nevertheless, in two-dimensional spacetimes, we have a foolproof method to
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eliminate coordinate singularities because the null geodesics divide up into two classes - “ingoing”
and “outgoing” - and within each class two distinct geodesics cannot cross, since their tangents
would have to coincide at the intersection, implying that the geodesics coincide everywhere. We
can introduce null coordinates, for which the two coordinates are constant along each “ingoing” or
“outgoing” geodesic, respectively. Thus, the coordinate grid will be based on teh geometrical grid
of null geodesics, and in this case the only coordinate singularities arise from bad parmeterization
of the geodesics. This can be corrected by comparing with an affine parameterization.

The null geodesics of Rindler spacetime can be found from the null condition

0 = gabk
akb = −x2ṫ2 + ẋ2, (5.4.3)

where ka is teh geodesic tangent and the dot denotes derivative with respect to the affine parameter.
This equation implies (dt/dx)2 = 1/x2, so that along each geodesic, we have t = ± lnx+ constant,
where the plus/minus sign refers to the “outgoing”/“ingoing” geodesics. Thus, we can define the
null coordinates (u, v) by

u = t− lnx, (5.4.4)

v = t+ lnx. (5.4.5)

In these coordinates, the metric components are

ds2 = −ev−ududv. (5.4.6)

Since the coordinate ranges −∞ < u <∞ and −∞ < v <∞ still only cover the x > 0 region, we
are finished yet. We can extend the spacetime beyond x = 0 (or, beyond “u =∞” and “v = −∞”)
by a reparameterization of coordinates U = U(u), V = V (v). We calculate the affine parameter
along the null geodesics. Note that the time translation vector (∂/∂t)a of Eq. 5.4.2 is a Killing
field. Therefore,

E = −gabka(∂/∂t)b = x2dt/dλ (5.4.7)

is a constant of the motion, where λ is the affine parameter. For the outgoing null geodesics, setting
u constant, we find

λ =
1

2E

∫
ev−udv = C + (e−u/2E)ev, (5.4.8)

wher C is a constant. Thus, λout = ev is an affine parameter along the outgoing geodesics. Similarly,
we can show that λin = e−u is an affine parameter along the ingoing geodesics. Therefore, we make
the transformation U = −e−u, V = ev, which results in

ds2 = −dUdV. (5.4.9)

The original Rindler spacetime corresponds to the ranges U < 0, V > 0, but there is no longer
any singularity in the metric components at U = 0 or V = 0, so we can extend the spacetime by
allowing −∞ < U <∞ and −∞ < V <∞. Finally, we make a transformation T = (U+V )/2, X =
(V − U)/2 to convert the metric into the familiar form

ds2 = −dT 2 + dX2. (5.4.10)

54



This shows the extended spacetime is just the Minkowski spacetime. The original coordinates (t, x)
are related to the final Minkowski coordinates (T,X) by

x =
√
X2 − T 2, (5.4.11)

t = tanh−1 T/X. (5.4.12)

From these equations we see that Rindler spacetime is the wedge X > |T | (region I) of Minkowski
spacetime. The nature of the coordinate singularity is revealed: the null lines X = ±T are misla-
beled by the original coordinates as x = 0, t = ±∞.

Note that the time translation symmetry of the Rindler metric (Eq. 5.4.2) corresponds to the
boost symmetry of Minkowski spacetime. The observers at constant x undergo the uniform accel-
eration a = 1/x, which diverges as x→ 0. We can check that static observers in the Schwarzschild
spacetime, in order to stand still in the gravitational field, must undergo a proper acceleration
a = (1 − 2M/r)−1/2M/r2, which diverges as r → 2M . This is analogous to the behavior of the
Rindler time coordinate as x→ 0.

The Schwarzschild spacetime is four-dimensional, but because of spherical symmetry, we only
need to look at the two-dimensional “r-t part” of the metric

ds2 = −(1− 2M/r)dt2 + (1− 2M/r)−1dr2. (5.4.13)

The null condition, analogous to Eq. 5.4.3, is

0 = gabk
akb = −(1− 2M/r)ṫ2 + (1− 2M/r)−1ṙ2, (5.4.14)

which implies (
dt

dr

)2

=

(
r

r − 2M

)2

. (5.4.15)

Thus, the radial null geodesics of Schwarzschild satisfy t = ±r∗+constant, where r∗ is the “Regge-
Wheeler tortoise coordinate,” given by r∗ = r + 2M ln (r/2M − 1) such that dr∗/dr = (1 −
2M/r)−1. We define the null coordinates u, v by

u = t− r∗, (5.4.16)

v = t+ r∗. (5.4.17)

In these coordinates, the metric is ds2 = −(1−2M/r)dudv, where r is a function of u and v, defined
implicitly by r∗(r) = (v − u)/2. Using this definition, we can rewrite the metric as

ds2 = −2Me−r/2M

r
e(v−u)/4Mdudv, (5.4.18)

where the metric components are factored into e−r/2M/r, which is not singular as r → 2M (u→∞
or v → −∞). Similar to the Rindler case, we make the transformation

U = −e−u/4M , (5.4.19)

V = ev/4M , (5.4.20)

and the metric becomes

ds2 = −32M3e−r/2M

r
dUdV. (5.4.21)
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Now the singularity at r = 2M (at U = 0 or V = 0) is removed, and we can extend the Schwarzschild
solution to all values of U and V that are compatible with r > 0. One final transformation
T = (U + V )/2, X = (V − U)/2 gives the Schwarzschild metric in the final form given by Kruskal
(1960)

ds2 =
32M3e−r/2M

r
(−dT 2 + dX2) + r2(dθ2 + sin2 θdφ2). (5.4.22)

The relation between the old coordinates (t, r) and the new coordinates (T,X) is given by( r

2M
− 1
)
er/2M = X2 − T 2, (5.4.23)

t

2M
= ln

(
T +X

X − T

)
= 2 tanh−1 (T/X). (5.4.24)

The allowed range of X and T is given by the condition r > 0, which yields X2 − T 2 > −1.
By construction, the radial null geodesics are 45◦ in Kruskal coordinates, and the Kruskal

extension is remarkably similar to the extension of the Rindler spacetime, with the major differences
being (1) the Schwarzschild spacetime is four-dimensional, so each point in the X-T diagram
represents a two-dimensional sphere of radius r; (2) there are physical singularities in the extended
region at X = ±(T 2 − 1)1/2. Note that these singularities have a spacelike character and exist
in the future of region II and the past of region III (Figure 6.9). Naively, we may think that
the singularities correspond to a timelike lines at the origin of coordinates, as suggested by the
Schwarzschild coordinates (t, r). From Eq. 5.4.23 we see that ∇ar = 0 at X = T = 0, and we can
verify that the static Killing field ξa also vanishes there. ∇ar and ξa become collinear along the
null lines X = ±T , and the vanishing of ξa at X = T = 0 leads to a mislabeling of the null lines as
t = ±∞. We must point out that the Kruskal coordinates work well for the strong field region of
the Schwarzschild geometry but not for the asymptotically flat region (r →∞).

For the extended Schwarzschild spacetime, region I corresponds to r > 2M and can be inter-
preted physically as representing the exterior gravitational field of a spherical body. An observer
in region I falling radially inward will cross X = T and enter region II. Once he enters region II,
he can never escape from it. He will fall into the singularity at X = (T 2 − 1)1/2 within a finite
proper time and any signal he sends in region II will stay in region II and fall into the singularity.
Thus, region II is referred to as a black hole. Region III has the time reversed properties of region
II and is referred to as a white hole. Any observer in region II must have originated from the
spacetime singularity X = −(T 2 − 1)1/2 and must leave region III within a finite time. Region IV
has properties identical to region I and represents another asymptotically flat region of spacetime
which lies “inside” the “radius” r = 2M . This is best illustrated in Figure 6.10 in Wald. However,
no observer in region I can communicate with any observer in region IV and any light signal sent
between the two regions will go into the black hole and be captured by the spacetime singularity.

The extended Schwarzschild solution is a valid solution of the vacuum Einstein equation and
therefore represents a possible spacetime structure in GR, but there is no reason for us to believe
that any region in the universe corresponds to this solution as it requires the initial condition
that a singularity in region III connects two asymptotically flat regions. However, as we have
discussed before in section 5.2, the metric outside a spherical body with sufficient mass will be the
Schwarzschild metric at all stages of a gravitational collapse. Thus, as shown in Figure 6.11, all of
regions III and IV, as well as parts of I and II, will be covered up by the collapsing matter, and part
of region II (black hole) is produced when the radial coordinate of of the collapsing body becomes
less than 2M .
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A Maps of Manifolds and Lie Derivatives

Let φ : M → N be a C∞ map, then this map carries along tangent vectors at a point p ∈ M to
tangent vectors at the point φ(p) ∈ N . This defines a map φ∗ : Vp → Vφ(p). We can also use φ to
pull back a function f : N → R on N to M to get (f ◦ φ) : M → R.

φ∗ maps a vector v ∈ Vp to a vector φ∗v ∈ Vφ(p). Recall from section 1.2 that vectors map a
collection of functions on a manifold to a number, so we define ∀f : N → R,

(φ∗v)(f) = v(f ◦ φ). (A.0.1)

We can think of φ∗ as the Jacobian/derivative of φ at p. The map φ∗ : V ∗φ(p) → V ∗p for dual vectors
can be defined similarly. For all va ∈ Vp,

(φ∗µ)av
a = µa(φ

∗v)a, (A.0.2)

where µ ∈ V ∗φ(p). Now we can extend the definitions of φ∗ (p to φ(p)) and φ∗ (φ(p) to p) to type

(k, 0) tensors and (0, l) tensors, respectively.
If φ is a diffeomorphism, i.e. it is bijective and has C∞ inverse, then we can extend the definition

of φ∗ to all types of tensors. Under this extended definition, φ∗t with a parameter t ∈ R carries
along a tensor field T a1...akb1...bl . If we choose a coordinate system on M such that the parameter t

is one of coordinate x1, then the tangent vector va = (∂/∂x1)a.
Diffeomorphisms lead to gauge freedom to any theory formulated in terms of spacetime man-

ifolds and tensor fields because they require identical manifold structure for the manifolds they
connect. We will show next that this gauge freedom is given by the Lie derivative of the tensor
field.

Let φt be a one-parameter group of diffeomorphism in M , i.e. generated by va. Treating t as a
coordinate as before, we can view φ∗−tT

a1...ak
b1...bl

as the tensor field T a1...akb1...bl being moved along

the x1 direction by t with all other coordinates fixed. The Lie derivative with respect to va is then

LvT a1...akb1...bl = lim
t→∞

{
φ∗−tT

a1...ak
b1...bl

− T a1...akb1...bl
t

}
(A.0.3)

Note this is a map from a type (k, l) tensor to another type (k, l) tensor. The Lie derivative Lv has
the following properties

(1) Leibnitz rule

(2) Lv(f) = v(f) = va∇af

(3) LvT a1...akb1...bl = 0 everywhere if and only if φt is a symmetry for T a1...akb1...bl for all t.

Under the coordinate system adapted to va, the components of the Lie derivative are

LvTµ1...µkν1...νl =
∂Tµ1...µkν1...νl

∂x1
. (A.0.4)

From here we see that φt is a symmetry transformation of T a1...akb1...bl if and only if the components

are independent of x1.
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The intuition of the Lie derivative can be described as follows. Let the vector va that generates
the Lie derivative Lv be a generator of rotation. When we have parallel transport a tensor (∇aT =
0) around a “circle”, we can view the the parallel transported tensors as being “parallel” to the
original tensor. However, under the analogous condition LvT = 0, the “transported” tensors are
“tangent” to the circle. The Lie derivative generated by the vector field va of a vector field wa can
written as the commutator between va and wa:

Lvwa = [v, w]a = vb∇bwa − wb∇bva. (A.0.5)

Using properties (1) and (2), this becomes

Lvµa = vb∇bµa + µb∇avb. (A.0.6)

And the general rule for applying the Lie derivative to a tensor is given by

LvT a1...akb1...bl = vc∇cT a1...akb1...bl −
k∑
i=1

T a1...c...akb1...bl∇cv
ai +

l∑
i=1

T a1...akb1...c...bl∇biv
c (A.0.7)

Now, consider the first order perturbation γab of the spacetime metric gab with parameter λ
around λ = 0. We have γab = dgab/dλ|λ=0 and γ′ab = d(φ∗λgab)/dλ|λ=0, where φλ is associated with
a vector field v. From the definition of Lie derivative, we get

Lv gab = γab − γ′ab. (A.0.8)

By equation A.0.7, and assuming the derivative operator ∇a is compatible with gab,

Lv gab = vc∇cgab + gcb∇avc + gac∇bvc = ∇avb +∇bva. (A.0.9)

Therefore the gauge transformation of γab is given by

γab → γ′ab = γab −∇avb −∇bva. (A.0.10)

For φλ to be a symmetry transformation of gab, the equation Lv gab = ∇avb +∇bva = 0 must
be satisfied.

B Killing Vector Fields

Let φt : M → M be a one-parameter group of isometries, i.e. φ∗t gab = gab, then the vector ξa

generating φt is called a Killing vector field, and the following equivalence holds for ξa:

φ∗t gab = gab ⇔ Lξgab = 0. (B.0.1)

The Killing vector field solves Killing’s equation

∇aξb +∇bξa = 0, (B.0.2)

and has the following properties:

(1) For a geodesic γ with tangent ua, ξau
a is constant along γ, i.e. ub∇b(ξaua) = 0.
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(2) ∇a∇bξc = −R d
bca ξd. This implies that values of ξa and ∇aξb at a point p ∈ M completely

determine ξa everywhere on M .

(i) If ξa = ∇aξb = 0 at a point, then ξa = 0 everywhere.

(ii) On an n-dimensional manifold M , there can be at most n + n(n − 1)/2 = n(n + 1)/2
linearly independent Killing fields.

The Killing vector field describes the direction of time translation invariance.
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